AIRTEC Pneumatics Inc.
730, Racquet Club Drive
Addison, IL 60101
USA
Phone: +1 630 543-02 65
Fax: +1630543-4420
Email: info @airtec-usa.com
airicec
Rodless cylinders



## Design and function

The toothed belt cylinder consists of an extruded cylinder tube with two chambers. They are connected to each other over the entire length of the cylinder. The pressure chamber is sealed towards the outside by a soft plastic band. Between the two piston seals a pressure-free space is created. In this space the seal band is lifted to the inside and is passed through the piston.

Simultaneously, a driver (piston bracket) grasps through the slot into the outer chamber.

Since the outer chamber encloses the longitudinal slot, it does not expand under pressure. This results in minimal leakage and better flexural and torsional stiffness.

## High operational safety through closed profile



## Contamination insensitive also in harsh environments

In the outer chamber, the piston bracket grips the toothed belt, which leads to a tension lock at the opposite side via the deflection pulley. Inside the slide, the cover belt is lifted from the slot, and the slide is connected to the tension lock.
By this principle, dirt is kept away from the sealing strip enabling use under rough operating conditions.
The force is transmitted, free of slip, to a shaft via the toothed belt pulley. As a result, several cylinders can be
linked and operated synchronously, enabling torques from the off-center application forces.
The cylinder can also be supplied with a brake mounted on the driven shaft without the use of an additional energy transmission chain. A cylinder supplied with a brake and encoder results in an inexpensive positioning system.
Since the slide or roller guide is already integrated into the slide, a complete linear drive is available with this cylinder.

## Applications

## Synchronous running



Since the force is transmitted to the shaft free of slip, a positioning system can be set up with the aid of an encoder.

With 2 slides


By mounting a second toothed belt and using a slide in tangential feed, a central clamping long stroke gripper is created.

## Applications

## With brake



Since the force is transmitted to the shaft free of slip, a positioning system can be set up with the aid of an encoder.

As a gripping cylinder


By mounting a second toothed belt and using a slide in tangential feed, a central clamping long stroke gripper is created.

## Loads, forces and torques



| Order number | Operating force* | Braking force* | $F \mathbf{F}+\mathrm{Fq}$ | MI | Mq | Ms |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ZR-25 | 250 N (56.2 lbf) | - | 400 N (89.9 lbf) | 40 Nm (29.5 ft. Ibf.) | 20 Nm (14.7 ft. Ibf.) | 30 Nm (22.1 ft. Ibf.) |
| ZR-25-BR | 250 N (56.2 lbf) | 380 N (85.4 lbf) | 400 N (89.9 lbf) | 40 Nm (29.5 ft. Ibf.) | 20 Nm (14.7 ft. Ibf.) | 30 Nm (22.1 ft. lbf.) |
| ZR-25S | 250 N (56.2 lbf) | - | 400 N (89.9 lbf) | 80 Nm (58.9 ft. lbf.) | 40 Nm (29.4 ft. Ibf.) | 60 Nm (44.2 ft. lbf.) |
| ZR-25S-BR | 250 N (56.2 lbf) | 380 N (85.4 lbf) | 400 N (89.9 lbf) | 80 Nm ( $58.9 \mathrm{ft}. \mathrm{lbf)}$. | 40 Nm (29.4 ft. lbf.) | 60 Nm (44.2 ft. lbf.) |
| ZR-40 | 640 N (143.9 lbf) | - | 800 N (179.8 lbf) | $75 \mathrm{Nm} \quad$ (55.2 ft. lbf.) | 30 Nm (22.1 ft. lbf.) | 50 Nm (36.8 ft. lbf.) |
| ZR-40-BR | 640 N (143.9 lbf) | 750 N (168.6 lbf) | 800 N (179.8 lbf) | 75 Nm (55.2 ft. Ibf.) | 30 Nm (22.1 ft. lbf.) | 50 Nm (36.8 ft. lbf.) |
| ZR-40S | 640 N (143.9 lbf) | - | 800 N (179.8 lbf) | 150 Nm (110.4 ft. Ibf.) | 60 Nm (44.2 ft. lbf.) | 100 Nm (73.6 ft. Ibf.) |
| ZR-40S-BR | 640 N (143.9 lbf) | 750 N (168.6 lbf) | 800 N (179.8 lbf) | 150 Nm (110.4 ft. lbf.) | 60 Nm (44.2 ft. lbf.) | 100 Nm ( $73.6 \mathrm{ft}$. lbf.) |
| ZR-40L | 640 N (143.9 lbf) | - | 1200 N (269.8 lbf) | 95 Nm (69.9 ft. lbf.) | 45 Nm (33.1 ft. lbf.) | 95 Nm (69.9 ft. lbf.) |
| ZR-40L-BR | 640 N (143.9 lbf) | 750 N (168.6 lbf) | 1200 N (269.8 lbf) | 95 Nm (69.9 ft. lbf.) | 45 Nm (33.1 ft. lbf.) | 95 Nm (69.9 ft. lbf.) |

* Operating force at 6 bar ( 87 psi ), braking force at 6 bar (87 psi) static.
Force and torque data are based on the speed of the slide guideways of $\leq 0.2 \mathrm{~m} / \mathrm{s}(0.656 \mathrm{ft} . / \mathrm{s})$, in case of roller guides of $\leq 2 \mathrm{~m} / \mathrm{s}(6.562$ $\mathrm{ft} . / \mathrm{s}$ ).
If speed exceeds $0.2 \mathrm{~m} / \mathrm{s}(0.656 \mathrm{ft} / \mathrm{s})$, the permissible values of the slide guideways must be multiplied by the factors from the table below. For roller or ball guide types is no factor required.


## Load coefficient

| $\mathbf{V}$ in $\mathbf{~ m / s}$ | $\mathbf{V}$ in ft./s | Factor |
| :---: | :---: | :---: |
| 0.2 | 0.656 | 1 |
| 0.3 | 0.984 | 0.75 |
| 0.4 | 1.312 | 0.5 |
| 0.5 | 1.640 | 0.4 |
| 0.75 | 2.460 | 0.27 |
| 1 | 3.281 | 0.2 |

## Circuit examples

## Control 1

Simple system for controlling the slide from end to end. A flow control valve can be used to adjust the cylinder speed.


## Control 3

This control circuit improves the positioning accuracy. The use of check valves reduces the stopping distance and also increases the load stiffness.


## Control 2

System to stop the cylinder on intermediate position with higher tolerances.


## Control 4

This circuit example permits the selection of different speeds (rapid or inching) for either forward or reverse motion. The brake is activated by a $3 / 2$ solenoid valve.



## Order code



## Design and function

Double acting rod less toothed belt cylinder with adjustable cushions. The toothed belt is driven by the piston in a closed profile tube. The piston actuates a slide with an adjustable slide guideway.

| Order number <br> Please complete according <br> to order code. | ZR-25-... | ZR-40- $\ldots$ |
| :--- | :--- | :--- |
| Piston $\varnothing(\mathrm{mm})$ | 25 | 40 |
| Connection | $\mathrm{G} 1 / 8$ | $\mathrm{G} 1 / 4$ |
| Cushioning length (mm) | $25 \mathrm{~mm} \mathrm{(1} \mathrm{in)}$ | $32 \mathrm{~mm} \mathrm{(11/4} \mathrm{in)}$ |
| Operating pressure | $1 \ldots 8$ bar (14.5 $\ldots 116 \mathrm{psi})$ |  |
| Temperature range | $\left.-15^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} \mathrm{(+5}{ }^{\circ} \mathrm{F} \ldots+158{ }^{\circ} \mathrm{F}\right)$ |  |
| Medium | Compressed air in accordance with ISO $8573-1: 2001$, Class 74 - and free of aggressive additives. <br> If speeds exceed $1 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$ lubricated air is recommended. |  |
| Stroke length | arbitrary up to $4500 \mathrm{~mm}(177 \mathrm{in})$ |  |
| Materials | Outer parts: Al-profile (anodized) <br> Seals: NBR, PA, PDF |  |



|  | Ø 25 | $\varnothing 40$ |
| :---: | :---: | :---: |
| Mass at 0 mm stroke | 2.18 kg ( 4.806 lbs .) | 3.19 kg (7.033 lbs.) |
| Mass for 100 mm (4 in) stroke extension | 0.40 kg (0.882 lb.) | 0.50 kg (1.102 lbs.) |

Max. stroke length 4.500 mm (177 in).
BM and BN dimensions used for extended shaft only.

| Cylinder $\boldsymbol{\varnothing}$ | A | B | C | D | E | F | G | H | J | K | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 150 | 68 | 7.5 | G1/8 | 62 | 67.5 | 76 | 8 | 48 | 50 | 60 | M5 (10/32 UNF) |
| $\mathbf{4 0}$ | 150 | 75 | 10 | G1/4 | 76.8 | 80.5 | 97.5 | 9 | 54 | 54 | 72 | M 6 |


| Cylinder Ø | $\mathbf{A C}$ | $\mathbf{A D}$ | $\mathbf{A E}$ | $\mathbf{A F}$ | $\mathbf{A G}$ | $\mathbf{A H}$ | $\mathbf{A J}$ | $\mathbf{A K}$ | AL | AM | AN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 33 | 30 | 156 | 160 | 5.5 | M 5 | 7 | 42 | 60 | 8.5 | 34.5 |
| $\mathbf{4 0}$ | 25 | 30 | 140 | 148 | 5.5 | M 5 | 8.5 | 40 | 72 | 16.5 | 43 |


| Cylinder $\varnothing$ | BB | BC | BD | BE | BF | BG | BH | BJ | BK | BL | BM | BN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 75 | 28 | 47 | 10 | 55.5 | 6 | 14 | 32 | 49 | 4 | 27.5 | 31.2 |
| 40 | 96.5 | 35.6 | 56 | 12 | 70.8 | 6.7 | 16 | 39.5 | 66 | 6 | 34.7 | 39.4 |



## Order code



## Design and function

Double acting rod less toothed belt cylinder with adjustable cushions. The toothed belt is driven by the piston in a closed profile tube. The piston actuates a slide with an adjustable heavy-duty slide guideway.

| Order number <br> Please complete according to order code. | ZR-25S-... | ZR-40S-... |
| :---: | :---: | :---: |
| Piston Ø (mm) | 25 | 40 |
| Connection | G1/8 | G1/4 |
| Cushioning length (mm) | 25 mm (1 in) | 32 mm (11/4 in) |
| Operating pressure | 1 ... 8 bar ( 14.5 ... 116 psi ) |  |
| Temperature range | $-15^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+5^{\circ} \mathrm{F} \ldots+15 \mathrm{c}^{\circ} \mathrm{F}\right)$ |  |
| Medium | Compressed air in accordance with ISO 8573-1:2001, Class 74 - and free of aggressive additives If speeds exceed $1 \mathrm{~m} / \mathrm{s}$ ( $3.3 \mathrm{ft} / \mathrm{s}$ ) lubricated air is recommended. |  |
| Stroke length | arbitrary up to 4300 mm (169 in) |  |
| Materials | Outer parts: Al-profile (anodized) <br> Seals: NBR, PA, PDF |  |



|  | Ø 25 | $\varnothing 40$ |
| :---: | :---: | :---: |
| Mass at 0 mm stroke | 2.58 kg ( 5.688 lbs.$)$ | 3.59 kg ( 7.914 lbs.$)$ |
| Mass for 100 mm (4 in) stroke extension | 0.40 kg ( 0.882 lb.$)$ | 0.50 kg (1.102 lbs.) |

Max. stroke length 4.300 mm (169 in).

| Cylinder Ø | A | B | C | D | E | F | G | H | J | K | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 225 | 68 | 7.5 | G1/8 | 62 | 67.5 | 76 | 8 | 48 | 50 | 60 | M5 $(10 / 32$ UNF) |
| $\mathbf{4 0}$ | 225 | 75 | 10 | G1/4 | 76.8 | 80.5 | 97.5 | 9 | 54 | 54 | 72 | M 6 |


| Cylinder Ø | AC | AD | AE | AF | AG | AH | AJ | AO | AM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 35 | 30 | 306 | 310 | 5.5 | M 5 | 7 | 18 | 4 |
| $\mathbf{4 0}$ | 29 | 30 | 290 | 298 | 5.5 | M 5 | 8.5 | 10 | 6 |


| Cylinder Ø | BB | BC | BD | BE | BF | BG | BH | BJ | BK | BL | BM | BN | BO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 75 | 28 | 47 | 10 | 55.5 | 6 | 14 | 32 | 42 | 60 | 8.5 | 34.5 | 27.5 |
| $\mathbf{4 0}$ | 96.5 | 35.6 | 56 | 12 | 70.8 | 6.7 | 16 | 39.5 | 40 | 72 | 16.5 | 43 | 34.7 |



## Order code



## Design and function

Double acting rod less toothed belt cylinder with adjustable cushions and magnet for proximity sensors. The toothed belt is driven by the piston in a closed profile tube. The piston actuates a slide with a pre-set roller guide.

| Order number <br> Please complete according <br> to order code. | ZR-40L-... |
| :--- | :--- |
| Piston $\varnothing(\mathrm{mm})$ | 40 |
| Connection | $\mathrm{G} 1 / 4$ |
| Cushioning length (mm) | $32 \mathrm{~mm}(11 / 4 \mathrm{in})$ |
| Operating pressure | $1 \ldots 8 \mathrm{bar}(14.5 \ldots 116 \mathrm{psi})$ |
| Temperature range | $-15^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+5^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$ |
| Medium | Compressed air in accordance with ISO $8573-1: 2001$, Class 74 - and free of aggressive additives. <br> If speeds exceed $1 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$ lubricated air is recommended. |
| Stroke length | arbitrary up to $4500 \mathrm{~mm}(177$ in) |
| Materials | Outer parts: hardened steel, Al-profile (anodized), plastic <br> Seals: NBR, PA, PDF |



Magnetic piston is a standard feature.
Mass at 0 mm stroke
4.84 kg ( 10.670 lbs.$)$
Mass for 100 mm (4 in) stroke extension
0.70 kg ( 1.543 lbs.$)$

Max. stroke length 4.500 mm (177 in).

| Cylinder Ø | A | B | C | D | E | F | G | H | J | K | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{4 0}$ | 150 | 75 | 10 | G1/4 | 76.8 | 46.1 | 94.4 | 9 | 54 | 54 | 72 | M 6 |


| Cylinder $\varnothing$ | AB | AC | AD | AE | AF | AG | AH | AJ | AK | AL | AM | AN | AP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | M 8 | 88 | 60 | 148 | 45 | 90 | 93.4 | 57.7 | 130 | 16 | 39.5 | 12 | 15 |

Rodless toothed belt cylinders


Adapter for encoder


## Air connections

The cylinder is supplied with three air connections. Two connections are necessary for operation, while the third is closed by a plug (included in the scope of delivery). The desired position of the double connection has to be specified in the order code after the stroke length by choosing the adequate number.


Option-4


Option - 2


Option - 3


Rodless toothed belt cylinders


## Head mount



| Head mount |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order number | Cyl.-Ø | AB | AC | AD | AE | AF | AG | AH | AJ |
| ZK-252 | 25 | 30 | 50 | 60 | 20 | 20 | 10 | 9 | 1 |
| ZK-402 | 40 | 30 | 54 | 71 | 20 | 20 | 10 | 9 | 1 |

## Center mount with tall head mount



| Head mount tall | Center mount |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order number | Order number | Cyl.-Ø | AB | AC | AD | AE | AF | AG | AH | AK | AL | AM | AN | AO | AP | AQ |
| ZK-253 | ZK-251 | 25 | 30 | 50 | 60 | 30 | 20 | 10 | 9 | 75 | 9 | 7.5 | 60 | 9 | 25 | 90 |
| ZK-403 | ZK-401 | 40 | 30 | 54 | 71 | 30 | 20 | 10 | 9 | 84 | 9 | 8 | 60 | 9 | 30 | 100 |

For series ZR-25/ZR-40/ZR-25S/ZR-40S

Magnet is not included.
Order number for magnet ZR-4006.
Order number for sensor mounting bracket ZR-4007.


Sensors see page 10.105.

For series ZR-40L

Magnetic slide is a standard feature.
Order number for sensor mounting bracket ZR-4007.


Sensors see page 10.105.


| Order number | ZS 100.1 |
| :--- | :--- |
| Weight | 30 g |
| Length of cable | 3 m |
| Temperature range | $-30 \ldots+80^{\circ} \mathrm{C} \quad\left(-22^{\circ} \mathrm{F} \ldots+176{ }^{\circ} \mathrm{F}\right)$ |
| Degree of protection | IP 67 |
| Response time | $\leq 0.1 \mathrm{~ms}$ |
| Switching time | $\leq 2 \mathrm{~ms}$ |
| Electrical life (resistive load) | $10^{7}$ |
| Repeatability | $\pm 0.1 \mathrm{~mm}$ |
| Contact function | NO |
| Shock resistance | 50 g |
| Vibration resistance | $50 \ldots 1000 \mathrm{~Hz}$ |
| Max. current at 25 ${ }^{\circ} \mathbf{C}$ (resistive load) | 1 A |
| Max. Power DC/AC | $50 \mathrm{~W} / 50 \mathrm{VA}$ |
| Operating voltages (DC or AC) | $3 \ldots 250 \mathrm{~V}$ |
| Max. voltage drop | $3 \Delta \mathrm{~V}$ |
| Wire gauge | $0.34 \mathrm{~mm}{ }^{2}$ |

## Adapter for encoder



The adapters can be mounted on all cylinders of series ZR and will fit all encoders with a 36 mm centering collar.

| Order number | ZA-36 | ZA-37 |
| :--- | :--- | :--- |
| Description | Attachment to brake | Direct attachment to housing |

Option A for $\varnothing 40$


Braking force static


## Option A for $\varnothing \mathbf{2 5}$



Braking force static


The brake is designed to hold the position. Do not use to stop the cylinder.

## Extended shaft for series ZR

The slide travels $135 \mathrm{~mm}(\varnothing$ 25) per one rotation of the shaft. The slide travels $185 \mathrm{~mm}(\varnothing 40)$ per one rotation of the shaft.


| Cylinder Ø | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| 25 | $10_{\mathrm{h} 7}$ | 2 | 60 | 93 |
| 40 | $12_{\mathrm{h} 7}$ | 3 | 72 | 112 |



## Seal kit for ZR-25

Order number: VS-ZR-25-Stroke length (for example 0500)
$0500=$ stroke lengths from 0 to 500 mm
$1000=$ stroke lengths from 501 to 1000 mm
$1500=$ stroke lengths from 1001 to 1500 mm $2000=$ stroke lengths from 1501 to 2000 mm $3000=$ stroke lengths from 2001 to 3000 mm $4500=$ stroke lengths from 3001 to 4500 mm

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 1 | O-ring | 4 |
| 2 | O-ring | 2 |
| 3 | Piston seal | 2 |
| 4 | Cushion seal | 2 |
| 5 | Wiper | 2 |
| 6 | Sealing band | $400 \mathrm{~mm}+$ stroke |
| 7 | Piston seal | 2 |
| 8 | Cover band | $200 \mathrm{~mm}+$ stroke |
| 9 | Roller | 2 |
|  | Grease | 30 ml |

Seal kit slide guideway for ZR-25
Order number: VS-ZR-25-GL

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 10 | Set screw | 4 |
| 11 | Slide 1 | 1 |
| 12 | Slide 2 | 1 |
| 13 | Support plate | 2 |
|  | Screw M 4 x10 | 4 |
|  | Screw M 4 x16 | 2 |
| 5 | Wiper | 2 |
| 9 | Roller | 2 |
|  | Grease | 30 ml |

## Toothed belt for ZR-25

Order number: VS-ZR-25-ZR-stroke

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 14 | Cylinder screw | 4 |
| 15 | Toothed plate | 2 |
| 16 | Clamp | 2 |
| 17 | Toothed belt | $2 \times(280 \mathrm{~mm}+$ stroke $)$ |



Order number: VS-ZR-40-Stroke length (for example 0500)
$0500=$ stroke lengths from 0 to 500 mm
$1000=$ stroke lengths from 501 to 1000 mm
$1500=$ stroke lengths from 1001 to 1500 mm
$2000=$ stroke lengths from 1501 to 2000 mm
$3000=$ stroke lengths from 2001 to 3000 mm
$4500=$ stroke lengths from 3001 to 4500 mm

| Pos. | Description | Quantity |
| ---: | :--- | :--- |
| 1 | O-Ring | 2 |
| 2 | O-Ring | 2 |
| 3 | O-Ring | 2 |
| 4 | Cover band | $200 \mathrm{~mm}+$ stroke |
| 5 | Sealing band | $400 \mathrm{~mm}+$ stroke |
| 6 | Wiper | 2 |
| 7 | Cover for wiper | 2 |
| 8 | Roller | 2 |
| 9 | Piston seal | 2 |
| 10 | Cushion seal | 2 |
| 11 | Piston seal | 2 |
|  | Grease | 30 ml |

Seal kit slide guideway for ZR-40
Order number: VS-ZR-40-GL

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 12 | Set screw | 4 |
| 13 | Slide 1 | 1 |
| 14 | Slide 2 | 1 |
| 15 | Support plate | 2 |
|  | Screw M 4 x 6 | 2 |
|  | Screw M 4 x10 | 4 |
| 6 | Wiper | 2 |
| 7 | Cover for wiper | 2 |
| 8 | Roller | 2 |
|  | Grease | 30 ml |

## Toothed belt for ZR-40

Order number: VS-ZR-40-ZR-stroke

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 16 | Cylinder screw | 4 |
| 17 | Toothed plate | 2 |
| 18 | Clamp | 2 |
| 19 | Toothed belt | $2 \times(290 \mathrm{~mm}+$ stroke $)$ |



Seal kit slide guideway for ZR-25S
Order number: VS-ZR-25S-GL

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 10 | Set screw | 8 |
| 11 | Slide 3 | 2 |
| 12 | Slide 4 | 2 |
| 13 | Support plate | 4 |
|  | Screw M 4 x 6 | 4 |
|  | Screw M 4 x 10 | 2 |
| 5 | Wiper | 2 |
| 9 | Roller | 2 |
|  | Grease | 30 ml |

## Toothed belt for ZR-25S

## Order number: VS-ZR-25S-ZR-stroke

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 14 | Cylinder screw | 4 |
| 15 | Toothed plate | 2 |
| 16 | Clamp | 2 |
| 17 | Toothed belt | $2 \times(385 \mathrm{~mm}+$ stroke $)$ |




Seal kit for ZR-40S
Order number: VS-ZR-40S-Stroke length (for example 0500)
$0500=$ stroke lengths from 0 to 500 mm
$1000=$ stroke lengths from 501 to 1000 mm
$1500=$ stroke lengths from 1001 to 1500 mm
$2000=$ stroke lengths from 1501 to 2000 mm
$3000=$ stroke lengths from 2001 to 3000 mm
$4500=$ stroke lengths from 3001 to 4500 mm

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 1 | O-Ring | 2 |
| 2 | O-Ring | 2 |
| 3 | O-Ring | 2 |
| 4 | Cover band | $350 \mathrm{~mm}+$ stroke |
| 5 | Sealing band | $550 \mathrm{~mm}+$ stroke |
| 6 | Wiper | 2 |
| 7 | Cover for wiper | 2 |
| 8 | Roller | 2 |
| 9 | Piston seal | 2 |
| 10 | Cushion seal | 2 |
| 11 | Piston seal | 2 |
|  | Grease | 30 ml |



Seal kit slide guideway for ZR-40S Order number: VS-ZR-40S-GL

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 12 | Set screw | 8 |
| 13 | Slide 1 | 2 |
| 14 | Slide 2 | 2 |
| 15 | Support plate | 4 |
|  | Screw M 4 x 6 | 2 |
|  | Screw M 4 x 10 | 4 |
| 6 | Wiper | 2 |
| 7 | Cover | 2 |
| 8 | Roller | 2 |
|  | Grease | 30 ml |

## Toothed belt for ZR-40S

Order number: VS-ZR-40S-ZR-stroke

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 16 | Cylinder screw | 4 |
| 17 | Toothed plate | 2 |
| 18 | Clamp | 2 |
| 19 | Toothed belt | $2 \times(395 \mathrm{~mm}+$ stroke $)$ |



## Seal kit for ZR-40L

Order number: VS-ZR-40L-Stroke length (for example 0500)
$0500=$ stroke lengths from 0 to 500 mm
$1000=$ stroke lengths from 501 to 1000 mm
$1500=$ stroke lengths from 1001 to 1500 mm $2000=$ stroke lengths from 1501 to 2000 mm $3000=$ stroke lengths from 2001 to 3000 mm $4500=$ stroke lengths from 3001 to 4500 mm

| Pos. | Description | Quantity |
| ---: | :--- | :--- |
| 1 | O-Ring | 2 |
| 2 | O-Ring | 2 |
| 3 | O-Ring | 2 |
| 4 | Cover band | $200 \mathrm{~mm}+$ stroke |
| 5 | Sealing band | $400 \mathrm{~mm}+$ stroke |
| 6 | Roller | 2 |
| 7 | Piston seal | 2 |
| 8 | Cushion seal | 2 |
| 9 | Piston seal | 2 |
| 10 | Wiper | 2 |
| 20 | Wiper | 2 |
|  | Grease | 30 ml |

## Cover for ZR-40L

Order number: VS-ZR-40L-AD

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 11 | Cover for wiper | 2 |
| 10 | Wiper | 2 |
|  | Flat-head screw M 6 | 4 |

## Roller slide complete for ZR-40L

Order number: 31-40-115-52

## Toothed belt for ZR-40L

## Order number: VS-ZR-40-ZR-stroke

| Pos. | Description | Quantity |
| :---: | :--- | :--- |
| 16 | Screw | 4 |
| 17 | Toothed plate | 2 |
| 18 | Clamp | 2 |
| 19 | Toothed belt | $2 \times(290 \mathrm{~mm}+$ stroke $)$ |

## Definition of forces and torques



## Maximum Force and Torque Data

| Type | Operating force* |  | Fn max. |  | $\mathrm{Fq}_{\text {max }}$. |  | MI max. | $\mathrm{Mq}_{\text {max }}$. |  | Ms max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ZX-25-S | 255 N | (57 lbf) | 270 N | (61 lbf) | - |  | $13 \mathrm{Nm} \quad(9.59 \mathrm{ft}. \mathrm{Ibf}$. | 2.5 Nm | (1.84 ft. lbf.) | $11 \mathrm{Nm} \quad$ (8.11 ft. lbf.) |
| ZX-25-K | 255 N | (57 lbf) | 270 N | (61 lbf) | - |  | 8 Nm (5.90 ft. lff.) | 2.0 Nm | (1.47 ft. lbf.) | $7 \mathrm{Nm} \quad$ (5.16 ft. ldf.) |
| ZX-25-SG | 250 N | (56 lbf) | 580 N | (130 lbf) | 580 N | (130 lbf) | 23 Nm (17.0 ft. lbf.) | 10.0 Nm | (7.37 ft. lbf.) | 23 Nm (17.0 ft. lbf.) |
| ZX-25-KG | 250 N | (56 lbf) | 340 N | (76 lbf) | 340 N | (76 lbf) | 9 Nm (6.64 ft. lbf.) | 5.0 Nm | (3.69 ft. lbf.) | 9 Nm (6.64 ft. lbf.) |
| ZX-25-SR | 250 N | (56 lbf) | 850 N | (191 lbf) | 1300 N | (292 lbf) | 65 Nm (47.9 ft.llif.) | 35.0 Nm | (25.8 ft. lbf.) | 105 Nm (77.4 ft. lbf.) |
| ZX-25-KR | 250 N | (56 lbf) | 850 N | (191 lbf) | 1300 N | (292 lbf) | 29 Nm (21.4 ft.lli.) | 35.0 Nm | (25.8 ft. lbf.) | 64 Nm (47.2 ft. lbf.) |
| ZX-32-S | 420 N | (94 lbf) | 300 N | (67 lbf) | - |  | 30 Nm (22.1 ft. lbf.) | 3.0 Nm | (2.21 ft. lbf.) | 24 Nm (17.7 ft. lbf.) |
| ZX-32-K | 420 N | (94 lbf) | 300 N | (67 lbf) | - |  | 15 Nm (11.1 ft. lbf.) | 3.0 Nm | (2.21 ft. lbf.) | 12 Nm (8.85 ft. lbf.) |
| ZX-32-SG | 410 N | (92 lbf) | 850 N | (191 lbf) | 850 N | (191 lbf) | $33 \mathrm{Nm} \quad$ (24.3 ft. lbf.) | 15.0 Nm | (11.1 ft. lbf.) | $33 \mathrm{Nm} \quad$ (24.3 ft. lbf.) |
| ZX-32-KG | 410 N | (92 lbf) | 460 N | (103 lbf) | 460 N | (103 lbf) | 14 Nm (10.3 ft. lbf.) | 6.5 Nm | (4.79 ft. lbf.) | 14 Nm (10.3 ft. lbf.) |
| ZX-32-SR | 410 N | (92 lbf) | 900 N | (202 lbf) | 1500 N | (337 lbf) | 79 Nm (58.3 ft. lbf.) | 40.0 Nm | (29.5 ft. lbf.) | 125 Nm (92.2 ft. lff.) |
| ZX-32-KR | 410 N | (92 lbf) | 900 N | (202 lbf) | 1500 N | (337 lbf) | 36 Nm (26.5 ft. lbf.) | 40.0 Nm | (29.5 ft. lbf.) | $76 \mathrm{Nm} \quad$ (56.1 ft. lbf.) |
| ZX-40-S | 655 N | (147 lbf) | 650 N | (146 lbf) | - |  | 60 Nm (44.2 ft. lbf.) | 4.0 Nm | (2.95 ft. lbf.) | $54 \mathrm{Nm} \quad$ (39.8 ft. lbf.) |
| ZX-40-K | 655 N | (147 lbf) | 650 N | (146 lbf) | - |  | 30 Nm (22.1 ft.lli.) | 4.0 Nm | (2.95 ft. lbf.) | 27 Nm (19.9 ft. lbf.) |
| ZX-40-SG | 640 N | (144 lbf) | 1120 N | (252 lbf) | 1120 N | (252 lbf) | 60 Nm (44.2 ft. lbf.) | 25.0 Nm | (18.4 ft. lbf.) | 60 Nm (44.2 ft. lbf.) |
| ZX-40-KG | 640 N | (144 lbf) | 600 N | (135 lbf) | 600 N | (135 lbf) | 25 Nm (18.4 ft. lbf.) | 11.0 Nm | (8.11 ft. lbf.) | 25 Nm (18.4 ft. lbf.) |
| ZX-40-SR | 640 N | (144 lbf) | 1200 N | (270 lbf) | 2000 N | (450 lbf) | 190 Nm (140 ft. lbf.) | 67.0 Nm | (49.4 ft. lbf.) | 118 Nm (87.0 ft. lbf.) |
| ZX-40-KR | 640 N | (144 lbf) | 1200 N | (270 lbf) | 2000 N | (450 lbf) | 85 Nm (62.7 ft. lbf.) | 67.0 Nm | (49.4 ft. lbf.) | $72 \mathrm{Nm} \quad$ (53.1 ft. lbf.) |
| ZX-50-S | 1000 N | (225 lbf) | 800 N | (180 lbf) | - |  | 80 Nm (59.0 ft. lbf.) | 17.0 Nm | (12.5 ft. lbf.) | $74 \mathrm{Nm} \quad$ (54.6 ft. lbf.) |
| ZX-50-K | 1000 N | (225 lbf) | 800 N | (180 lbf) | - |  | 38 Nm (28.0 ft. lbf.) | 17.0 Nm | (12.5 ft. lbf.) | 32 Nm (23.6 ft. lbf.) |
| ZX-50-SG | 1000 N | (225 lbf) | 1550 N | (348 lbf) | 1500 N | (337 lbf) | 200 Nm (147.5 ft. lbf.) | 70.0 Nm | ( $51.6 \mathrm{ft}. \mathrm{lbf)}$. | 200 Nm (147.5 ft. lbf.) |
| ZX-50-KG | 1000 N | (225 lbf) | 820 N | (184 lbf) | 800 N | (180 lbf) | 60 Nm (44.2 ft. lbf.) | 40.0 Nm | (29.5 ft. lbf.) | 60 Nm (44.2 ft. lbf.) |
| ZX-50-SR | 1000 N | (225 lbf) | 4100 N | (922 lbf) | 2000 N | (450 lbf) | 157 Nm (115.6 ft. lbf.) | 45.0 Nm | (33.1 ft. lbf.) | 170 Nm (125.2 ft. lff.) |
| ZX-50-KR | 1000 N | (225 lbf) | 1800 N | (405 lbf) | 2000 N | (450 lbf) | 67 Nm (49.4 ft. lbf.) | 45.0 Nm | (33.1 ft. lbf.) | 106 Nm (78.1 ft. lff.) |
| ZX-63-S | 1600 N | (360 lbf) | 1400 N | (315 lbf) | - |  | $110 \mathrm{Nm} \quad$ (81.0 ft. ldf.) | 17.0 Nm | (12.5 ft. lbf.) | 100 Nm (73.7 ft. lff.) |
| ZX-63-K | 1600 N | (360 lbf) | 1400 N | (315 lbf) | - |  | $50 \mathrm{Nm} \quad$ (36.8 ft. lbf.) | 17.0 Nm | (12.5 ft. lbf.) | 48 Nm (35.4 ft. lbf.) |
| ZX-63-SG | 1600 N | (360 lbf) | 2000 N | (450 lbf) | 2000 N | (450 lbf) | 300 Nm (221.2 ft. lbf.) | 102.0 Nm | (75.2 ft. lbf.) | 300 Nm (221.2 ft. lff.) |
| ZX-63-KG | 1600 N | (360 lbf) | 1100 N | (247 lbf) | 1100 N | (247 lbf) | 105 Nm (77.4 ft. lbf.) | 56.0 Nm | (41.3 ft. lbf.) | 105 Nm (77.4 ft. lbf.) |
| ZX-63-SR | 1600 N | (360 lbf) | 5000 N | (1124 lbf) | 2000 N | (450 lbf) | 196 Nm (144.4 ft. lbf.) | 52.0 Nm | (38.3 ft. lbf.) | 208 Nm (153.2 ft. lff.) |
| ZX-63-KR | 1600 N | (360 lbf) | 2500 N | (562 lbf) | 2000 N | (450 lbf) | 99 Nm (72.9 ft. lbf.) | 52.0 Nm | (38.3 ft. lbf.) | $134 \mathrm{Nm} \quad$ (98.7 ft. lbf.) |

The mounting surface of the assembled mass should not exceed a straightness tolerance of 0.1 mm to avoid additional tension or clearance in the guiding system.

## Complex loads

If more than one force and torque appear simultaneously, they have to be calculated by the formula:


Information on forces and torques refers to speeds for slide guides (series S, K, SG and KG) of $\leq 0.2 \mathrm{~m} / \mathrm{s}(0.656 \mathrm{ft} / \mathrm{s})$ and speeds for roller guides (series SR and KR) of $\leq 2 \mathrm{~m} / \mathrm{s}(6.562 \mathrm{ft} / \mathrm{s})$.
Where speeds exceed $0.2 \mathrm{~m} / \mathrm{s}(0.656 \mathrm{ft} / \mathrm{s})$ the permissible values of the slide guides are to be multiplied by the loading coefficient (see table on the right).
The information on torques refers to the center point of the slide which, in the case of the ZX$S$ and $Z X-K$ cylinders, is the center of the tube. In versions with slide guides, the center point of the guide is in the slide.

* Operating force at 6 bar ( 87 psi ). The internal friction is considered.

Loading coefficient

| $\mathbf{V}$ in $\mathbf{~ m / s}$ | $V$ in $\mathrm{ft} / \mathbf{s}$ | Factor |
| :---: | :---: | :---: |
| 0.2 | 0.656 | 1 |
| 0.3 | 0.984 | 0.75 |
| 0.4 | 1.312 | 0.5 |
| 0.5 | 1.640 | 0.4 |
| 0.75 | 2.460 | 0.27 |
| 1 | 3.281 | 0.2 |

## Cushioning diagram

The stroke end cushion must be adjusted to hitchless driving. If the application is out of the diagram range, an external shock absorber is required. The mounting position of shock absorbers must be close to the center of the mass. The data applies to a horizontal mounting position.



For additional loads, please consider the allowed maximum forces and torques on page 10.140.


## Deflection





## Order code



## Design and function

Double acting rodless cylinder with adjustable cushion and permanent magnet. The non-rotating piston guides the moving mass. The sensors can be installed directly into the grooves of the aluminum profile.
Cylinders of this series are available in explosion proof design in accordance with 94/9/EG (ATEX). For further details see page 10.180.

| Order number <br> Please complete according to order code. | ZX-25-S-... | ZX-32-S-... | ZX-40-S-... | ZX-50-S-... | ZX-63-S-... |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Piston Ø (mm) | 25 | 32 | 40 | 50 | 63 |
| Connection | G1/8 | G1/8 | G1/4 | G3/8 | G3/8 |
| Cushioning length (mm) | 24 | 28 | 36 | 45 | 59 |
| Mass at 0 mm stroke | $\begin{aligned} & 0.88 \mathrm{~kg} \\ & (1.940 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.40 \mathrm{~kg} \\ & (3.086 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 2.41 \mathrm{~kg} \\ & (5.313 \mathrm{lbs} .) \end{aligned}$ | 5.3 kg <br> (11.684 lbs.) | 8.1 kg <br> ( 17.857 lbs. ) |
| additional mass per 100 mm | $\begin{aligned} & 0.30 \mathrm{~kg} \\ & (0.661 \mathrm{lb} .) \end{aligned}$ | $\begin{aligned} & 0.39 \mathrm{~kg} \\ & (0.860 \mathrm{lb} .) \end{aligned}$ | $\begin{aligned} & 0.52 \mathrm{~kg} \\ & \text { ( } 1.168 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 0.96 \mathrm{~kg} \\ & (2.116 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.32 \mathrm{~kg} \\ & (2.91 \mathrm{lbs} .) \end{aligned}$ |
| Operating pressure | $1 \ldots 8$ bar ( $14.5 \ldots 116 \mathrm{psi})$ |  |  |  |  |
| Temperature range | $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| Medium | Compressed air in accordance with ISO 8573-1: 2001, Class 74 -; free of aggressive additives. If speeds exceed $1 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$ lubricated air is recommended. |  |  |  |  |
| Stroke length | arbitrary up to 6000 mm (arbitrary up to 236 in) (max. 234 in) |  | max. 5950 mm <br> (max. 232 in) | max. 5910 mm <br> (max. 230 in) | max. 5860 mm |
| Materials | AI (anodized), plastic Seals: NBR, PU |  |  |  |  |


cross section $B-B$

SA = Depth of thread $S B=$ Length of hex.

$(Z)=$ Cushion set screw.
Drawing shows pressure supply type -01 for air connection on both ends.
Other types see page 10.156.
view $A$


| Piston Ø | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{I}$ | $\mathbf{J}$ | $\mathbf{K}$ | $\mathbf{L}$ | $\mathbf{M}$ | $\mathbf{N}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 100 | 149.6 | 200 | $\mathrm{G} 1 / 8$ | 12.5 | 5 | 19 | 9.5 | 6 H 7 | 4.5 | 49 | 25 | 4.5 | 20 |
| $\mathbf{3 2}$ | 120 | 184.5 | 240 | $\mathrm{G} 1 / 8$ | 12.5 | 5.5 | 19 | 9.5 | 6 H 7 | 5.5 | 58 | 32.3 | 7.5 | 42.5 |
| $\mathbf{4 0}$ | 150 | 222.6 | 300 | $\mathrm{G} 1 / 4$ | 12.5 | 7 | 23 | 11.5 | 7 H 7 | 6.5 | 68 | 38.2 | 7.5 | 35 |
| $\mathbf{5 0}$ | 175 | 262 | 350 | $\mathrm{G} 3 / 8$ | 17.5 | 9 | 30 | 17 | 10 | 8.5 | 94 | 59 | 12.5 | 45 |
| $\mathbf{6 3}$ | 200 | 300 | 400 | $\mathrm{G} 3 / 8$ | 25 | 9.5 | 30 | 17 | 10 | 8.5 | 110 | 68.4 | 14.0 | 80 |


| Piston Ø | $\mathbf{O}$ | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ | $\mathbf{T}$ | $\mathbf{U}$ | $\mathbf{V}$ | $\mathbf{W}$ | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{S A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 50 | 15 | $\mathrm{M} 5 \times 7 \mathrm{~mm}$ deep | 35 | 22 | 45 | 60 | M 4 | 36 | 36 | 45 | 11 |
| $\mathbf{3 2}$ | 45 | 15 | $\mathrm{M} 5 \times 7 \mathrm{~mm}$ deep | 50 | 22 | 54 | 69 | M 5 | 41 | 41 | 54 | 11 |
| $\mathbf{4 0}$ | 90 | 15 | $\mathrm{M} 5 \times 9 \mathrm{~mm}$ deep | 65 | 22 | 64 | 82 | M 6 | 49 | 49 | 64 | 12 |
| $\mathbf{5 0}$ | 60 | 34 | $\mathrm{M} 8 \times 16 \mathrm{~mm}$ deep | 90 | 46 | 90 | 115 | M 8 | 65 | 65 | 90 | 17 |
| $\mathbf{6 3}$ | 80 | 34 | $M 8 \times 16 \mathrm{~mm}$ deep | 90 | 46 | 106 | 131 | M 8 | 78 | 78 | 106 | 17 |

## Rodless short cylinders



## Order code



## Design and function

Double acting rodless cylinder with adjustable cushion and permanent magnet. The non-rotating piston guides the moving mass. The design of the K series significantly reduces the overall length of the cylinder (by as much as $30 \%$ ).
The sensors can be installed directly into the grooves of the aluminum profile.
Cylinders of this series are available in explosion proof design in accordance with 94/9/EG (ATEX). For further details see page 10.180.

| Order number <br> Please complete according to order code. | ZX-25-K-... | ZX-32-K-... | ZX-40-K-... | ZX-50-K-... | ZX-63-K-... |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Piston Ø (mm) | 25 | 32 | 40 | 50 | 63 |
| Connection | G1/8 | G1/8 | G1/4 | G3/8 | G3/8 |
| Cushioning length (mm) | 24 | 28 | 36 | 45 | 59 |
| Mass at $\mathbf{0 m m}$ stroke | $\begin{aligned} & 0.62 \mathrm{~kg} \\ & (1.367 \mathrm{lbs} .) \end{aligned}$ | 0.96 kg <br> (2.116 lbs.) | $\begin{aligned} & 1.65 \mathrm{~kg} \\ & \text { (3.637 lbs.) } \end{aligned}$ | $\begin{aligned} & \hline 3.5 \mathrm{~kg} \\ & (7.716 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & \hline 5.4 \mathrm{~kg} \\ & (11.905 \mathrm{lbs} .) \end{aligned}$ |
| additional mass per 100 mm | 0.30 kg <br> ( 0.661 lb .) | 0.39 kg <br> ( 0.860 lb .) | $\begin{aligned} & 0.52 \mathrm{~kg} \\ & (1.168 \mathrm{lbs} .) \end{aligned}$ | 0.96 kg <br> (2.116 lbs.) | $\begin{aligned} & 1.32 \mathrm{~kg} \\ & (2.91 \mathrm{lbs} .) \end{aligned}$ |
| Operating pressure | $1 \ldots 8$ bar (14.5 ... 116 psi ) |  |  |  |  |
| Temperature range | $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F} \ldots+15 \mathrm{c}^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| Medium | Compressed air in accordance with ISO 8573-1:2001, Class 74 -; free of aggressive additives. If speeds exceed $1 \mathrm{~m} / \mathrm{s}$ ( $3.3 \mathrm{ft} / \mathrm{s}$ ) lubricated air is recommended. |  |  |  |  |
| Stroke length | arbitrary up to 6000 mm (236 in) |  |  |  |  |
| Materials | AI (anodized), plastic Seals: NBR, PU |  |  |  |  |


$(Z)=$ Cushion set screw.
Drawing shows pressure supply type -01 for air connection on both ends.
Other types see page 10.156.


| Piston Ø | A | B | C | D | E | F | G | H | I | J | K | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 67.5 | 84.6 | 135 | G1/8 | 12.5 | 5 | 19 | 9.5 | 6 H 7 | 4.5 | 49 | 35 |
| $\mathbf{3 2}$ | 77.5 | 99.6 | 155 | G1/8 | 12.5 | 5.5 | 19 | 9.5 | 6 H 7 | 5.5 | 58 | 45 |
| $\mathbf{4 0}$ | 95 | 112.6 | 190 | $\mathrm{G} 1 / 4$ | 12.5 | 7 | 23 | 11.5 | 7 H 7 | 6.5 | 68 | 50 |
| $\mathbf{5 0}$ | 105 | 122 | 210 | $\mathrm{G} 3 / 8$ | 17.5 | 9 | 30 | 17 | 10 H 7 | 8.5 | 94 | 64 |
| $\mathbf{6 3}$ | 125 | 150 | 250 | $\mathrm{G} 3 / 8$ | 25 | 9.5 | 30 | 17 | 10 H 7 | 8.5 | 110 | 80 |


| Piston Ø | $\mathbf{N}$ | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ | $\mathbf{T}$ | $\mathbf{U}$ | $\mathbf{V}$ | $\mathbf{W}$ | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{S A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | M5 $\times 7 \mathrm{~mm}$ deep | 15 | 25 | 22 | 45 | 60 | 36 | M4 | 36 | 45 | 4.5 | 11 |
| $\mathbf{3 2}$ | M5 $\times 7 \mathrm{~mm}$ deep | 15 | 32.3 | 22 | 54 | 69 | 41 | M5 | 41 | 54 | 7.5 | 11 |
| $\mathbf{4 0}$ | M5 $\times 9 \mathrm{~mm}$ deep | 15 | 38.3 | 22 | 64 | 82 | 49 | M6 | 49 | 64 | 7.5 | 12 |
| $\mathbf{5 0}$ | M8 $\times 16 \mathrm{~mm}$ deep | 34 | 59 | 46 | 90 | 115 | 65 | M8 | 65 | 90 | 12.5 | 17 |
| $\mathbf{6 3}$ | M8 $\times 16 \mathrm{~mm}$ deep | 34 | 68.4 | 46 | 106 | 131 | 78 | M8 | 78 | 106 | 14 | 17 |



## Order code



## Design and function

Double acting rodless cylinder with adjustable cushion and permanent magnet. Series SG incorporates an adjustable guide system for medium loads.
The sensors can be installed directly into the grooves of the aluminum profile.
Cylinders of this series are available in explosion proof design in accordance with 94/9/EG (ATEX). For further details see page 10.180.

| Order number <br> Please complete according to order code. | ZX-25-SG-... | ZX-32-SG-... | ZX-40-SG-... | ZX-50-SG-... | ZX-63-SG-... |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Piston Ø (mm) | 25 | 32 | 40 | 50 | 63 |
| Connection | G1/8 | G1/8 | G1/4 | G3/8 | G3/8 |
| Cushioning length (mm) | 24 | 28 | 36 | 45 | 59 |
| Mass at 0 mm stroke | $\begin{aligned} & 1.31 \mathrm{~kg} \\ & (2.888 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 2.09 \mathrm{~kg} \\ & (4.608 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 3.58 \mathrm{~kg} \\ & (7.892 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 7.28 \mathrm{~kg} \\ & \text { (16.049 lbs.) } \end{aligned}$ | $\begin{aligned} & 11.02 \mathrm{~kg} \\ & (24.294 \mathrm{lbs} .) \end{aligned}$ |
| additional mass per 100 mm | $\begin{aligned} & 0.30 \mathrm{~kg} \\ & (0.661 \mathrm{lb} .) \end{aligned}$ | $\begin{aligned} & 0.39 \mathrm{~kg} \\ & (0.860 \mathrm{lb} .) \end{aligned}$ | $\begin{aligned} & 0.52 \mathrm{~kg} \\ & (1.168 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 0.96 \mathrm{~kg} \\ & (2.116 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.32 \mathrm{~kg} \\ & (2.91 \mathrm{lbs} .) \end{aligned}$ |
| Operating pressure | 1 ... 8 bar ( $14.5 \ldots 116 \mathrm{psi}$ ) |  |  |  |  |
| Temperature range | $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F} \ldots+15 \mathrm{c}^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| Medium | Compressed air in accordance with ISO 8573-1:2001, Class 74 -; free of aggressive additives. If speeds exceed $1 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$ lubricated air is recommended. |  |  |  |  |
| Stroke length | arbitrary up to 6000 mm (arbitrary up to 236 in) |  | max. 5950 mm (max. 234 in) | max. 5910 mm <br> (max. 232 in) | max. 5860 mm <br> (max. 230 in) |
| Materials | AI (anodized), plastic Seals: NBR, PU |  |  |  |  |


cross section B-B


SA $=$ Depth of thread
$\mathrm{SB}=$ Length of hex.


* $=$ Thread only in cylinder $\varnothing 32 \mathrm{~mm}$ (depth of thread 9 mm ).
$(Z)=$ Cushion set screw.
Drawing shows pressure supply type -01 for air connection on both ends.
Other types see page 10.156 .
view A


| Piston Ø | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{H}$ | $\mathbf{K}$ | $\mathbf{L}$ | $\mathbf{A B}$ | $\mathbf{A C}$ | $\mathbf{A D}$ | $\mathbf{A E}$ | $\mathbf{A F}$ | $\mathbf{A G}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 100 | 159 | 200 | $\mathrm{G} 1 / 8$ | 9.5 | 25 | 30 | 19 | 30 | $\mathrm{M} 5 \times 8 \mathrm{~mm}$ deep | 10.4 | 50 | 12.5 | 8.6 | 6.4 | 4.3 |
| $\mathbf{3 2}$ | 120 | 191 | 240 | $\mathrm{G} 1 / 8$ | 9.5 | 32.3 | 70 | 19 | 35 | $\mathrm{M} 5 \times 11 \mathrm{~mm}$ deep* | 10.4 | 50 | 16.9 | 8.6 | 6.4 | 4.3 |
| $\mathbf{4 0}$ | 150 | 246 | 300 | $\mathrm{G} 1 / 4$ | 11.5 | 38.2 | 55 | 23 | 55 | $\mathrm{M} 6 \times 12 \mathrm{~mm}$ deep | 10.4 | 80 | 10 | 8.6 | 6.4 | 4.3 |
| $\mathbf{5 0}$ | 175 | 270 | 350 | $\mathrm{G} 3 / 8$ | 17 | 59 | 42 | 30 | 50 | $\mathrm{M} 8 \times 16 \mathrm{~mm}$ deep | 10.4 | 94 | 23 | 8.6 | 6.4 | 4.3 |
| $\mathbf{6 3}$ | 200 | 320 | 400 | $\mathrm{G} 3 / 8$ | 17 | 68.4 | 60 | 30 | 60 | $\mathrm{M} \times 16 \mathrm{~mm}$ deep | 10.4 | 110 | 24 | 8.6 | 6.4 | 4.3 |


| Piston $\varnothing$ | AH | AJ | AK | AL | AM | AN | AO | AP | AR | SA | $\mathbf{S B}$ | $\boldsymbol{\varnothing} \mathbf{X 1}$ | $\mathbf{X 2}$ | $\boldsymbol{\varnothing} \mathbf{~ X 3}$ | $\mathbf{X 4}$ | $\mathbf{X 5}$ | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 36 | 4.5 | 4.5 | 36 | 45 | 75 | M4 | 59 | 15 | 11 | 3 | 4 | $4.4+0.2$ | 4 H 7 | 4.5 | 5.5 | $4+0.02$ |
| $\mathbf{3 2}$ | 41 | 6.5 | 7.5 | 41 | 54 | 83.8 | M5 | 69 | 15 | 11 | 4 | 4 | $4.4+0.2$ | 4 H 7 | 7 | 8 | $4+0.02$ |
| $\mathbf{4 0}$ | 49 | 7.5 | 7.5 | 49 | 64 | 100 | M6 | 79 | 18 | 12 | 4 | 6 | $6.4+0.2$ | 6 H 7 | 7 | 8 | $6+0.02$ |
| $\mathbf{5 0}$ | 65 | 12.5 | 12.5 | 65 | 90 | 133 | M8 | 112.5 | 25 | 17 | 5 | - | $6.4+0.2$ | 6 H 7 | 3 | 3 | $6+0.02$ |
| $\mathbf{6 3}$ | 78 | 14 | 14 | 78 | 106 | 150 | M8 | 134.5 | 26 | 17 | 5 | - | $6.4+0.2$ | 6 H 7 | 6.5 | 6.5 | $6+0.02$ |

## Rodless short cylinders with slide guide



## Order code



## Design and function

Double acting rodless cylinder with adjustable cushion and permanent magnet. Series KG incorporates an adjustable guide system for medium loads.
The design of the KG series cylinder significantly reduces the overall length of the cylinder (by as much as $30 \%$ ).
The sensors can be installed directly into the grooves of the aluminum profile.
Cylinders of this series are available in explosion proof design in accordance with 94/9/EG (ATEX). For further details see page 10.180.

| Order number <br> Please complete according to order code. | ZX-25-KG- | ZX-32-KG-.. | ZX-40-KG- | ZX-50-KG- | ZX-63-KG-... |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Piston Ø (mm) | 25 | 32 | 40 | 50 | 63 |
| Connection | G1/8 | G1/8 | G1/4 | G3/8 | G3/8 |
| Cushioning length (mm) | 24 | 28 | 36 | 45 | 59 |
| Mass at 0 mm stroke | $\begin{aligned} & 0.88 \mathrm{~kg} \\ & (1.940 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.35 \mathrm{~kg} \\ & (2.976 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 2.30 \mathrm{~kg} \\ & (5.070 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 4.63 \mathrm{~kg} \\ & (10.207 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & \hline 7.1 \mathrm{~kg} \\ & (15.652 \mathrm{lbs} .) \end{aligned}$ |
| additional mass per 100 mm | $\begin{aligned} & 0.30 \mathrm{~kg} \\ & (0.661 \mathrm{lb} .) \end{aligned}$ | 0.39 kg <br> ( 0.860 lb. ) | $\begin{aligned} & 0.52 \mathrm{~kg} \\ & (1.168 \mathrm{lbs} .) \end{aligned}$ | 0.96 kg <br> (2.116 lbs.) | $\begin{aligned} & 1.32 \mathrm{~kg} \\ & (2.91 \mathrm{lbs} .) \end{aligned}$ |
| Operating pressure | $1 \ldots 8$ bar (14.5 ... 116 psi ) |  |  |  |  |
| Temperature range | $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| Medium | Compressed air in accordance with ISO 8573-1: 2001, Class 74 -; free of aggressive additives. If speeds exceed $1 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$ lubricated air is recommended. |  |  |  |  |
| Stroke length | arbitrary up to 6000 mm (236 in) |  |  |  |  |
| Materials | AI (anodized), plastic Seals: NBR, PU |  |  |  |  |



## cross section B-B



SA = Depth of thread SB = Length of hex.
cross section $\mathrm{X}-\mathrm{X}$


* $=$ Thread only in cylinder $\varnothing 32 \mathrm{~mm}$ (depth of thread 9 mm ).
$(Z)=$ Cushion set screw.
Drawing shows pressure supply type -01 for air connection on both ends.
Other types see page 10.156 .
view A


| Piston $\varnothing$ | A | B | C | D | E | F | G | H | $J$ | K | AB | AC | AD | AE | AF | AG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 67.5 | 94 | 135 | G 1/8 | 9.5 | 25 | 19 | 30 | 30 | M5 x 8 mm deep | 4.3 | 50 | 12.5 | 6.4 | 10.4 | 8.6 |
| 32 | 77.5 | 106 | 155 | G 1/8 | 9.5 | 32.3 | 19 | 70 | 35 | $\mathrm{M} 5 \times 11 \mathrm{~mm}$ deep* | 4.3 | 50 | 16.9 | 6.4 | 10.4 | 8.6 |
| 40 | 95 | 136 | 190 | G 1/4 | 11.5 | 38.2 | 23 | 55 | 55 | M6x12 mm deep | 4.3 | 80 | 10 | 6.4 | 10.4 | 8.6 |
| 50 | 105 | 148 | 210 | G 3/8 | 17 | 59 | 30 | 42 | 50 | M8x16 mm deep | 4.3 | 94 | 23 | 6.4 | 10.4 | 8.4 |
| 63 | 125 | 180 | 250 | G 3/8 | 17 | 68.4 | 30 | 60 | 60 | M8x16 mm deep | 4.3 | 110 | 24 | 6.4 | 10.4 | 8.4 |


| Piston $\varnothing$ | AH | AJ | AK | AL | AM | AN | AO | AP | AR | SA | SB | Ø X1 | X2 | Ø X3 | X4 | X5 | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 36 | 4.5 | 4.5 | 36 | 45 | 75 | M4 | 59 | 15 | 11 | 3 | 4 | $4.4+0.2$ | 4 H 7 | 4.5 | 5.5 | $4+0.02$ |
| 32 | 41 | 6.5 | 7.5 | 41 | 54 | 83.8 | M5 | 69 | 15 | 11 | 4 | 4 | $4.4+0.2$ | 4 H 7 | 7 | 8 | $4+0.02$ |
| 40 | 49 | 7.5 | 7.5 | 49 | 64 | 100 | M6 | 79 | 18 | 12 | 4 | 6 | $6.4+0.2$ | 6 H 7 | 7 | 8 | $6+0.02$ |
| 50 | 65 | 12.5 | 12.5 | 65 | 90 | 133 | M8 | 112.5 | 25 | 17 | 5 | - | $6.4+0.2$ | $6 \mathrm{H7}$ | 3 | 3 | $6+0.02$ |
| 63 | 78 | 14 | 14 | 78 | 106 | 150 | M8 | 134.5 | 26 | 17 | 5 | - | $6.4+0.2$ | 6 H 7 | 6.5 | 6.5 | $6+0.02$ |



## Order code



## Design and function

Double acting rodless cylinder with adjustable cushion and permanent magnet. The SR series rodless cylinders includes integrated hardened steel shafts and hardened rollers for smooth and precise movement under high force and torque. The sensors can be installed directly into the grooves of the aluminum profile.
Cylinders of this series are available in explosion proof design in accordance with 94/9/EG (ATEX). For further details see page 10.180.

| Order number <br> Please complete according to order code. | ZX-25-SR-... | ZX-32-SR-... | ZX-40-SR-... | ZX-50-SR-... | ZX-63-SR-... |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Piston Ø (mm) | 25 | 32 | 40 | 50 | 63 |
| Connection | G1/8 | G1/8 | G1/4 | G3/8 | G3/8 |
| Cushioning length (mm) | 24 | 28 | 36 | 45 | 59 |
| Mass at 0 mm stroke | $\begin{aligned} & 1.97 \mathrm{~kg} \\ & (4.343 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 2.96 \mathrm{~kg} \\ & (6.525 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 5.89 \mathrm{~kg} \\ & (12.985 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 9.10 \mathrm{~kg} \\ & (20.062 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 13.17 \mathrm{~kg} \\ & (29.035 \mathrm{lbs} .) \end{aligned}$ |
| additional mass per 100 mm | $\begin{aligned} & 0.42 \mathrm{~kg} \\ & (0.926 \mathrm{lb} .) \end{aligned}$ | $\begin{aligned} & 0.48 \mathrm{~kg} \\ & (1.058 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 0.74 \mathrm{~kg} \\ & (1.631 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.08 \mathrm{~kg} \\ & (2.381 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.42 \mathrm{~kg} \\ & (3.130 \mathrm{lbs} .) \end{aligned}$ |
| Operating pressure | $\begin{aligned} & 1.5 \ldots 8 \mathrm{bar} \\ & (21.75 \ldots 116 \mathrm{psi}) \end{aligned}$ | 1 ... 8 bar (14.5 ... 116 psi) |  |  |  |
| Temperature range | $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F} \ldots+158^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| Medium | Compressed air in accordance with ISO 8573-1:2001, Class 74 -; free of aggressive additives. If speeds exceed $1 \mathrm{~m} / \mathrm{s}$ ( $3.3 \mathrm{ft} / \mathrm{s}$ ) lubricated air is recommended. |  |  |  |  |
| Stroke length | arbitrary up to 6000 mm (236 in) |  | $\underset{(234 \mathrm{in})}{\max ^{2} 5950 \mathrm{~mm}}$ | $\begin{aligned} & \max .5910 \mathrm{~mm} \\ & (233 \mathrm{in}) \end{aligned}$ | $\begin{aligned} & \max .5860 \mathrm{~mm} \\ & (231 \mathrm{in}) \end{aligned}$ |
| Materials | AI (anodized), plastic, hardened steel Seals: NBR, PU |  |  |  |  |


cross section $B-B$


SA = Depth of thread SB = Length of hex.


* $=$ not for $\varnothing 25 \mathrm{~mm}$ cylinder.
(Z) $=$ Cushion set screw.

Drawing shows pressure supply type -01 for air connection on both ends. Other types see page 10.156.
view A


| Piston $\varnothing$ | A | B | C | D | E | F | G | H | J | K | M | N | 0 | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 100 | 160 | 200 | G1/8 | 68.2 | 40 | 40 | M5-7.5 mm deep | 19 | 28.5 | 25 | 9.5 | 97 | M4 |
| 32 | 120 | 201 | 240 | G1/8 | 78 | 40 | 40 | M6-9 mm deep | 19 | 34.5 | 32.3 | 9.5 | 108.8 | M5 |
| 40 | 150 | 252 | 300 | G1/4 | 90.5 | 55 | 55 | M6-12 mm deep | 23 | 45 | 38.2 | 11.5 | 145 | M6 |
| 50 | 175 | 270 | 350 | G3/8 | 120 | 55 | 55 | M8-15 mm deep | 30 | 54.5 | 59 | 17 | 164 | M8 |
| 63 | 200 | 320 | 400 | G3/8 | 137 | 70 | 70 | M8-17 mm deep | 30 | 55 | 68.4 | 17 | 180 | M8 |


| Piston $\varnothing$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ | $\mathbf{T}$ | $\mathbf{U}$ | $\mathbf{V}$ | $\mathbf{W}$ | $\mathbf{S A}$ | $\mathbf{S B}$ | $\boldsymbol{\varnothing} \mathbf{X 1}$ | $\mathbf{X 2}$ | $\boldsymbol{\varnothing} \mathbf{X 3}$ | Y1 | Y2 | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 30.5 | 26 | 36 | 45 | 4.5 | 36 | 34.2 | 11 | 3 | 4 | $4.4+0.2$ | $4 \mathrm{H7}$ | 8 | 7 | $4+0.02$ |
| $\mathbf{3 2}$ | 32.9 | 27.4 | 41 | 54 | 6.5 | 41 | 39.5 | 11 | 4 | 4 | $4.4+0.2$ | 4 H 7 | 8 | 7 | $4+0.02$ |
| $\mathbf{4 0}$ | 48 | 40.5 | 49 | 64 | 7.5 | 49 | 47 | 12 | 4 | 6 | $6.4+0.2$ | 6 H 7 | 8 | 7 | $6+0.02$ |
| $\mathbf{5 0}$ | 49 | 36.5 | 65 | 90 | 12.5 | 65 | 51.5 | 17 | 5 | 6 | $6.4+0.2$ | 6 H 7 | 3.5 | 3 | $6+0.02$ |
| $\mathbf{6 3}$ | 51 | 37 | 78 | 106 | 14 | 78 | 60.5 | 17 | 5 | 6 | $6.4+0.2$ | 6 H 7 | 7 | 6.5 | $6+0.02$ |



## Order code



## Design and function

Double acting rodless cylinder with adjustable cushion and permanent magnet. The KR series rodless cylinders includes integrated hardened steel shafts and hardened rollers for smooth and precise movement under high force and torque.
The design of the KR series cylinder significantly reduces the overall length of the cylinder (by as much as $30 \%$ ).
The sensors can be installed directly into the grooves of the aluminum profile.
Cylinders of this series are available in explosion proof design in accordance with 94/9/EG (ATEX). For further details see page 10.180 .

| Order number <br> Please complete according to order code. | ZX-25-KR-... | ZX-32-KR-... | ZX-40-KR-... | ZX-50-KR-... | ZX-63-KR-... |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Piston Ø (mm) | 25 | 32 | 40 | 50 | 63 |
| Connection | G1/8 | G1/8 | G1/4 | G3/8 | G3/8 |
| Cushioning length (mm) | 24 | 28 | 36 | 45 | 59 |
| Mass at 0 mm stroke | $\begin{aligned} & 1.33 \mathrm{~kg} \\ & (2.932 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.91 \mathrm{~kg} \\ & (4.211 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 3.84 \mathrm{~kg} \\ & (8.465 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 5.82 \mathrm{~kg} \\ & (12.831 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 8.66 \mathrm{~kg} \\ & (19.092 \mathrm{lbs} .) \end{aligned}$ |
| additional mass per 100 mm | 0.42 kg <br> (0.926 lb.) | $\begin{aligned} & 0.48 \mathrm{~kg} \\ & (1.058 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 0.74 \mathrm{~kg} \\ & (1.631 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.08 \mathrm{~kg} \\ & (2.381 \mathrm{lbs} .) \end{aligned}$ | $\begin{aligned} & 1.42 \mathrm{~kg} \\ & (3.130 \mathrm{lbs} .) \end{aligned}$ |
| Operating pressure | $\begin{aligned} & 1.5 \ldots 8 \mathrm{bar} \\ & (21.75 \ldots 116 \mathrm{psi}) \end{aligned}$ | $\begin{aligned} & 1 \ldots 8 \text { bar } \\ & (14.5 \ldots 116 \mathrm{psi}) \end{aligned}$ |  |  |  |
| Temperature range | $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F} \ldots+15 \mathrm{c}^{\circ} \mathrm{F}\right)$ |  |  |  |  |
| Medium | Compressed air in accordance with ISO 8573-1:2001, Class 74 -; free of aggressive additives If speeds exceed $1 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$ lubricated air is recommended. |  |  |  |  |
| Stroke length | arbitrary up to 6000 mm (236 in) |  |  |  |  |
| Materials | AI (anodized), plastic, hardened steel Seals: NBR, PU |  |  |  |  |


cross section B-B


SA = Depth of thread SB $=$ Length of hex.
$(Z)=$ Cushion set screw.
Drawing shows pressure supply type -01 for air connection on both ends. Other types see page 10.156 .
view A


| Piston $\varnothing$ | A | B | C | D | E | F | G | H | J | K | M | N | 0 | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 67.5 | 95 | 135 | G1/8 | 68.2 | 20 | 40 | M5-7.5 mm deep | 19 | 28.5 | 25 | 9.5 | 97 | M4 |
| 32 | 77.5 | 115 | 155 | G1/8 | 78 | 40 | 40 | M6-9 mm deep | 19 | 34.4 | 32.3 | 9.5 | 108.8 | M5 |
| 40 | 95 | 143.5 | 190 | G1/4 | 90.5 | 55 | 55 | M6-12 mm deep | 23 | 45 | 38.2 | 11.5 | 145 | M6 |
| 50 | 105 | 148 | 210 | G3/8 | 120 | 27.5 | 55 | M8-15 mm deep | 30 | 54.5 | 59 | 17 | 164 | M8 |
| 63 | 125 | 188 | 250 | G3/8 | 137 | 70 | 70 | M8-17 mm deep | 30 | 55 | 68.4 | 17 | 180 | M8 |


| Piston $\varnothing$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ | $\mathbf{T}$ | $\mathbf{U}$ | $\mathbf{V}$ | $\mathbf{W}$ | $\mathbf{S A}$ | $\mathbf{S B}$ | $\boldsymbol{\varnothing} \mathbf{X 1}$ | $\mathbf{X 2}$ | $\boldsymbol{\varnothing} \mathbf{X 3}$ | Y1 | Y2 | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 30.5 | 26 | 36 | 45 | 4.5 | 36 | 34.2 | 11 | 3 | 4 | $4.4+0.2$ | 4 H 7 | 8 | 7 | $4+0.02$ |
| $\mathbf{3 2}$ | 32.9 | 27.4 | 41 | 54 | 6.5 | 41 | 39.5 | 11 | 4 | 4 | $4.4+0.2$ | 4 H 7 | 8 | 7 | $4+0.02$ |
| $\mathbf{4 0}$ | 48 | 40.5 | 49 | 64 | 7.5 | 49 | 47 | 12 | 4 | 6 | $6.4+0.2$ | 6 H 7 | 8 | 7 | $6+0.02$ |
| $\mathbf{5 0}$ | 49 | 36.5 | 65 | 90 | 12.5 | 65 | 51.5 | 17 | 5 | 6 | $6.4+0.2$ | 6 H 7 | 3.5 | 3 | $6+0.02$ |
| $\mathbf{6 3}$ | 51 | 37 | 78 | 106 | 14 | 78 | 60.5 | 17 | 5 | 6 | $6.4+0.2$ | 6 H 7 | 7 | 6.5 | $6+0.02$ |



## Mounting parts for series ZX

## Alignment coupler ZXB-Ø-20



The alignment coupler is designed to be used with external guide systems. This coupler compensates for the mis-alignment between the rodless cylinder and the external guide system (supplied by customer). For use with cylinder series ZX- $\varnothing$-K and ZX- $\varnothing$-S.

| Order number | Cyl.-Ø | A | B | Radial clearance C |
| :---: | :---: | :---: | :---: | :---: |
| ZXB-25-20 | 25 | $16^{\circ}\left( \pm 8^{\circ}\right)$ | $73 \ldots 75$ | $\pm 0.8$ |
|  | 32 | $12^{\circ}\left( \pm 6^{\circ}\right)$ | $81.4 \ldots 82.4$ |  |
| ZXB-40-20 | 40 | $9^{\circ}\left( \pm 4.5^{\circ}\right)$ | $93 \ldots 95$ |  |
|  |  | $12^{\circ}\left( \pm 6^{\circ}\right)$ | $94 \ldots 95$ |  |
| ZXB-50-20 | 50 | $7^{\circ}\left( \pm 3.5^{\circ}\right)$ | $129 . .130$ |  |
|  |  | $10^{\circ}\left( \pm 5^{\circ}\right)$ | $130 \ldots 131$ |  |
|  | 63 | $5^{\circ}\left( \pm 2.5^{\circ}\right)$ | 144.5 ... 145.5 |  |
|  |  | $9^{\circ}\left( \pm 4.5^{\circ}\right)$ | $145.5 \ldots 146.5$ |  |


| Order number | Cyl.-Ø | D | E | F | G | H | K | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ZXB-25-20 | 25 | 8 | 54 | 40 | 20 | 80 | 66 | $4 \times \varnothing 6.5$ | $4 \times \mathrm{M} 6$ |
|  | 32 |  |  |  |  |  |  |  |  |
| ZXB-40-20 | 40 |  |  |  |  |  |  |  |  |
| ZXB-50-20 | 50 | 11 | 80 | 51 | 23 | 122 | 102 | $4 \times \varnothing 9$ | $4 \times \mathrm{M} 8$ |
|  | 63 |  |  |  |  |  |  |  |  |

## Air connection for series ZX-Ø-S and ZX-Ø-K

## Option -01



Option -01 cylinder comes with two pressure connections (W-X and $\mathrm{Y}-\mathrm{Z}$ respectively) on each end. User is required to select one of two pressure connections on each end. Second port will require the installation of a sealing plug (2 plugs are supplied).

## Option -02



| Cyl.-Ø | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | G1/8 | 28.5 | 13.5 | 8 | 11 | 29.5 | 13.5 |
| $\mathbf{3 2}$ | G1/8 | 34.5 | 17.5 | 9.5 | 9.5 | 34.5 | 17.5 |
| $\mathbf{4 0}$ | $\mathrm{G} 1 / 4$ | 42.5 | 20.5 | 11.5 | 11.5 | 38.2 | 15.5 |
| $\mathbf{5 0}$ | $\mathrm{G} 3 / 8$ | 59 | 29 | 17 | 17 | 59 | 29.6 |
| $\mathbf{6 3}$ | $\mathrm{G} 3 / 8$ | 68.4 | 34 | 17 | 17 | 68.4 | 34 |

One cylinder head is supplied with 6 ports ( 3 for each direction, U-V-W are for travel in one direction and $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ are for travel in the opposite direction). User is required to select one of three pressure connections for each direction. The second and third ports will require the installation of a sealing plug (4 plugs are supplied).
Ports V and Y must be plugged when using a head mount.

## Air connection options for series ZX-Ø-S and ZX-Ø-K

## Option -04



Option -04 enable to connect pressure at both face ends or one face and one side port.
Therefor the head with 6 ports from option -02 is used at both ends. Now it is possible to use the upper ports (U-V-W). The lower ports (X-Y-Z) are plugged.
This option is for using ports at both cylinder heads only.
The dimensions are identical to option -02.

## Seal kit for series ZX

Order code


## Air connection options for series ZX-Ø-SG, ZX-Ø-KG, ZX- $\varnothing$-SR, ZX-Ø-KR

## Option -01




Option -01 cylinder comes with two pressure connections (W-X and $\mathrm{Y}-\mathrm{Z}$ respectively) on each end. User is required to select one of two pressure connections on each end. Second port will require the installation of a sealing plug (2 plugs are supplied).

## Option -02


view A


One cylinder head is supplied with 6 ports (3 for each direction, U-VW are for travel in one direction and $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ are for travel in the opposite direction). User is required to select one of three pressure connections for each direction. The second and third ports will require the installation of a sealing plug ( 4 plugs are supplied).
With this option the slide guide is mounted on the left side of the piston driver (see view A).
Ports V and Y must be plugged when using a head mount.

| Cyl.-Ø | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | G1/8 | 28.5 | 13.5 | 8 | 11 | 29.5 | 13.5 |
| $\mathbf{3 2}$ | G1/8 | 34.5 | 17.5 | 9.5 | 9.5 | 34.5 | 17.5 |
| $\mathbf{4 0}$ | G1/4 | 42.5 | 20.5 | 11.5 | 11.5 | 38.2 | 15.5 |
| $\mathbf{5 0}$ | G3/8 | 59 | 29 | 17 | 17 | 59 | 29.6 |
| $\mathbf{6 3}$ | G3/8 | 68.4 | 34 | 17 | 17 | 68.4 | 34 |

## Air connection options for series ZX-Ø-SG, ZX-ø-KG, ZX- $\varnothing$-SR, ZX- $\varnothing$-KR

## Option -03



Same as option -02 but with this option the slide guide is mounted on the right side of the piston driver.

## Option -04



Option -04 enable to connect pressure at both face ends or one face and one side port.
Therefor the head with 6 ports from option -02 is used at both ends. Now it is possible to use the upper ports (U-V-W). The lower ports (X-Y-Z) are plugged.
This option is for using ports at both cylinder heads only.
The dimensions are identical to option -02.

## Mounting parts for series $\mathbf{Z X}$

Head mount ZXB-Ø-01


## Materials: Al (anodized)

Screws to mount the head mount to the cylinder are included. The face ports must be plugged when using a head mount.

| Cyl.-Ø | A | B | C | D | E | F | G | $\mathbf{H}$ | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 45 | 10 | 5.5 | 22 | 36 | 4.5 | 5.5 | 4.5 | 7.4 |
| $\mathbf{3 2}$ | 51 | 15 | 7 | 25 | 41 | 7.5 | 8.5 | 5.5 | 9 |
| $\mathbf{4 0}$ | 64 | 15 | 9 | 25 | 49 | 7.5 | 8.5 | 6.5 | 11 |
| $\mathbf{5 0}$ | 89 | 15 | 8.5 | 40 | 65 | 12.5 | 13.5 | 8.5 | 15 |
| $\mathbf{6 3}$ | 105 | 15 | 8.5 | 50 | 78 | 14 | 15 | 8.5 | 15 |



Head mount tall ZXB-Ø-02


Materials: Al (anodized)
Screws to mount the head mount to the cylinder are included. The face ports must be plugged when using a head mount.

| Cyl. $-\boldsymbol{\varnothing}$ | A | B | C | D | E | F | G | H | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 45 | 15 | 5.5 | 22 | 36 | 12.5 | 5.5 | 4.5 | 8 |
| $\mathbf{3 2}$ | 51 | 15 | 7 | 25 | 41 | 16.5 | 17.5 | 5.5 | 9 |
| $\mathbf{4 0}$ | 64 | 15 | 9 | 25 | 49 | 17.5 | 8.5 | 6.5 | 11 |
| $\mathbf{5 0}$ | 89 | 15 | 8.5 | 40 | 65 | 27.5 | 12.5 | 8.5 | 15 |
| $\mathbf{6 3}$ | 105 | 15 | 8.5 | 50 | 78 | 29 | 11 | 8.5 | 15 |



## Mounting parts for series ZX

## Center mount ZXB- $\varnothing$-10 with ZXB-Ø-02



Materials: AI (anodized)
Screws to mount the head mount to the cylinder are included.
The cylinder can be securely mounted by using two center mounts without the need for head mounts.


Due to the symmetric profile of the cylinder- $\varnothing 25,40,50$ and 63 , the center mounts can be used on three sides of the profile. For $\phi 32$ the center mount $\mathrm{ZXB}-32-10$ is for use opposite of the carriage only. If mounting is required on the other two sides center mount $\mathrm{ZXB}-32-11$ is required.

| Cyl.-Ø | A | B | C | D | E | F | G | H | J | K | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 5}$ | 18 | 8 | 15 | 7.5 | 5.5 | 35 | 45 | 22 | 5.5 | 60 | 70 |
| $\mathbf{3 2}$ | 34 | 10 | 15 | 7.5 | 6.6 | 40 | 51 | 25 | 7 | 73 | 85 |
| $\mathbf{4 0}$ | 26 | 10 | 15 | 7.5 | 9 | 40 | 64 | 25 | 9 | 90.5 | 105 |
| $\mathbf{5 0}$ | 40 | 15 | 15 | 7.5 | 11 | 70 | 89 | 40 | 8.5 | 120 | 138 |
| $\mathbf{6 3}$ | 40 | 15 | 15 | 7.5 | 11 | 70 | 105 | 50 | 8.5 | 136 | 154 |

## Center mount tall ZXB-32-11 with ZXB-32-02



Materials: AI (anodized)
Screws to mount the head mount to the cylinder are included.
The cylinder can be securely mounted by using two center mounts without the need for head mounts.


## Wiring diagram



Reed
ZS-5600


ZS-5700, ZS-5700-10


ZS-6700, ZS-7300


Reed ZS-5601


ZS-5701


ZS-6701, ZS-7302 (dimensions for ZS-7302, page 9.221)
ZS-5700; A = $5.000 \pm 20$
ZS-5700-10; A = 10.000 $\pm 20$

ZS-5601, ZS-5701, ZS-6701


ZS-5600, ZS-6700, ZS-7300; A = $3.000 \pm 20$


## Function principles

Magnetic field sensors are actuated by magnetic fields and are especially suited for piston position detection in pneumatic cylinders. Based on the fact that magnetic fields can permeate non-magnetizable metals, it is possible to detect a permanent magnet attached to the piston through the aluminum wall of the cylinder.

## Mounting tip

The sensor is firmly fixed in the groove by clockwise rotation of the screw.

## Proximity sensors Reed contact

| Order number | ZS-5600 | ZS-5601 | ZS-5700 | ZS-5700-10 | ZS-5701 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Design | 2-pole Reed sensor (non-polarized) normally open |  | 3-pole Reed sensor* normally open |  |  |
| Cable | ¢ 2.8, PUR |  |  |  |  |
| Cable cross section | n/a |  |  |  |  |
| Cable length | 3 m | 0.3 m | 5 m | 10 m | 0.3 m |
| Cable plug | - | M 8 | - | - | M 8 |
| Overtravel speed | n/a |  |  |  |  |
| Max. absolute hysteresis | n/a |  |  |  |  |
| Temperature drift | n/a |  |  |  |  |
| min. absolute repeat accuracy | n/a |  |  |  |  |
| Operating temperature | $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ |  |  |  |  |
| Degree of protection | IP 67 |  |  |  |  |
| Housing material | Plastic |  |  |  |  |
| Switching status indication | LED red |  | LED yellow |  |  |
| Rated operational voltage | 5... 240 V AC/DC | $5 \ldots 60 \mathrm{~V} \mathrm{AC/DC}$ | $5 \ldots 30 \mathrm{~V}$ DC |  |  |
| Rated operational DC <br> current $I_{E}$ AC | $\begin{array}{ll} 3 & \ldots 100 \mathrm{~mA} \\ 3 & 100 \mathrm{~mA} \end{array}$ |  | $\begin{aligned} & \leq 500 \mathrm{~mA} \\ & \leq 500 \mathrm{~mA} \end{aligned}$ |  |  |
| Breaking capacity | $\leq 10 \mathrm{~W}$ |  |  |  |  |
| No-load current | n/a |  | $\leq 10 \mathrm{~mA}$ |  |  |
| Max. OFF-state current | 0 mA |  |  |  |  |
| Max. switching frequency | $\leq 0.2 \mathrm{kHz}$ |  |  |  |  |
| Rated insulation voltage | n/a |  |  |  |  |
| Short-circuit protection | no |  |  |  |  |
| Max. voltage drop at IE | $\leq 2.5 \mathrm{~V}$ |  | $\leq 0.1 \mathrm{~V}$ |  |  |
| Wire breakage | no |  |  |  |  |
| Reverse polarity protection | yes |  |  |  |  |
| Vibration resistance | $9 \mathrm{~g} \mathrm{(1.5} \mathrm{mm} 10-,55 \mathrm{~Hz}-10 \mathrm{~Hz}$ ) |  |  |  |  |
| Shock resistance | 30 g (11 ms) |  |  |  |  |
| Explosion proof | - |  |  |  |  |

* Useable as 2-wire contact, voltage $0 \ldots 30$ V AC / 0 ... 30 V DC, LED has no function.

Mounting bracket for round cylinder Ø 8-63 mm


Material: metal, plastic PA GI/6T

Dimensions for ZS-7302


Connecting cable for ZS-5601, ZS-5701 and ZS-6701


Cable: PUR, black, $3 \times 0.25 \mathrm{~mm}^{2}$, $\varnothing$ 3.9, high flexible Operating voltage
0 ... 48 V AC/DC

| Order number | Length of cable | Connection |
| :--- | :---: | :--- |
| KA-30 | 3 m | 8 mm sensor snap-in, straight |
| KA-50 | 5 m | 8 mm sensor snap-in, straight |
| KA-51 | 5 m | 8 mm sensor snap-in, $90^{\circ}$ |
| KA-100 | 10 m | 8 mm sensor snap-in, straight |
| KA-101 | 10 m | 8 mm sensor snap-in, $90^{\circ}$ |

## Proximity sensors electronic

| Order number | ZS-6700 | ZS-6701 | ZS-7300 | ZS-7302 |
| :---: | :---: | :---: | :---: | :---: |
| Design | electronic, magnet-induktive sensor, normally open PNP output |  |  |  |
| Cable | ¢ 2,8, PUR |  | $\mathrm{n} / \mathrm{a}$ |  |
| Cable cross section | n/a |  | $3 \times 0,14 \mathrm{~mm}^{2}$ |  |
| Cable lengths | 3 m | 0,3 m | 6 m | 0,3 m |
| Cable plug | - | M 8 | - | M12 |
| Overtravel speed | n/a |  | $\leq 10 \mathrm{~m} / \mathrm{s}$ |  |
| Max. absolute hysteresis | n/a |  | $\mathrm{n} / \mathrm{a}$ |  |
| Temperatur drift | n/a |  | $\leq 0,1 \mathrm{~mm}$ |  |
| Min. absolute repeat accuracy | n/a |  | $\leq 0,2 \mathrm{~mm}$ |  |
| Operating temperature | $-10^{\circ} \mathrm{C} \ldots+70{ }^{\circ} \mathrm{C}$ |  | $-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ |  |
| Degree of protection | IP 67 |  | IP65/IP67 | IP 67 |
| Housing material | Plastic |  | Body: PA; Mounting band: stainless steel |  |
| Switching status indication | LED green |  | LED yellow |  |
| Rated operational voltage | $5 \ldots 30 \mathrm{~V}$ DC |  | $10 \ldots 30 \mathrm{~V}$ DC |  |
| Rated operational DC <br> current $\mathrm{I}_{\mathrm{E}}$ $\quad$ AC | $\leq 200 \mathrm{~mA}$ |  | $\begin{gathered} \leq 100 \mathrm{~mA} \\ - \\ \hline \end{gathered}$ |  |
| Breaking capacity | 6 W |  | n/a |  |
| No-load current | $\leq 10 \mathrm{~mA}$ |  | $\leq 10 \mathrm{~mA}$ |  |
| Max. OFF-state current | $\mathrm{n} / \mathrm{a}$ |  | n/a |  |
| Max. switching frequency | $\leq 1 \mathrm{kHz}$ |  | $>6.000 \mathrm{~Hz}$ | $>10.000 \mathrm{~Hz}$ |
| Rated insulation voltage | n/a |  | n/a |  |
| Short-circuit protection | yes |  | yes |  |
| Max. voltage drop at $\mathrm{I}_{\mathrm{E}}$ | $\leq 1,0 \mathrm{~V}$ |  | $\leq 2,5 \mathrm{~V}$ |  |
| Wire breakage | yes |  | n/a |  |
| Reverse polarity protection | yes |  | yes |  |
| Vibration resistance | $9 \mathrm{~g} \mathrm{(1.5} \mathrm{mm} 10-,55 \mathrm{~Hz}-10 \mathrm{~Hz})$ |  | n/a |  |
| Shock resistance | $50 \mathrm{~g}(11 \mathrm{~ms})$ |  | n/a |  |
| Explosion proof | - |  | EX II 3G Ex nA T4 X EX II 3D Ex tD A22 IP67 T125 ${ }^{\circ} \mathrm{C} \mathrm{X}$ | EX III 3D Ex tc IIIC T125 ${ }^{\circ} \mathrm{C}$ Dc X |

## Pneumatic and explosion protection

## The directive 94/9/EC (ATEX)

ATEX derives it's name from ATmosphère EXposible and stands for the Directive 94/9/EC of the European Parliament. The Directive concerns electrical and non-electrical equipment and protection systems for use in potential explosive atmospheres.
Since $1^{\text {st }}$ of July 2003, devices and protection systems for use in potentially explosive areas must satisfy the new Directive 94/9/EC.

Compared with the previons directives, it must be noted that the specification refers not only to electrical but also to mechanical equipment.

## ATEX classifies explosive atmospheres and associates equipment

| explosion protection docu- <br> ment from plant manufacture | AIRTEC |
| :--- | :--- |
| Plant evaluation acc. to <br> ATEX directive 99/92/EC | Equipment evaluation ac- <br> cording (acc.) to ATEX di- <br> rective 94/9/EC |
|  |  |
| - Zone classification <br> - Temperature class <br> - Explosion group <br> - Ambient temperature | - Equipment group <br> - Temperature class <br> - Explosion group <br> - Ambient temperature |

## General information

## Category

The categories define which zones the devices may be used in. The classification states how frequently and in what concentration the ignitable mixture occurs. Furthermore, differentiation is made as to whether the hazard is due to gases, vapors and mists or due to dust.


Example of zone classification in gas Ex area

## Category 1

For devices, which guarantee a very high level of safety. Intended for the case where an atmosphere at risk of explosion is to be expected frequently or continuously. Devices in this category can also be used in Category 2 and 3.

## Inflammable gases, vapors or mists

## Zone 0 equivalent to Category 1G

Area in which an atmosphere at risk of explosion as a mixture of air and inflammable gases, vapors or mists is continuously or frequently present or present for long periods.

## Inflammable dusts

Zone 20 equivalent to Category 1D
Area in which an atmosphere at risk of explosion in the form of a cloud of inflammable dust contained in the air is continuously or frequently present or present for long periods.

## Category 2

For devices, which guarantee a high level of safety.
Intended for the case where an atmosphere at risk of explosion is to be expected.
Devices in this category can also be used in Category 3.

## Inflammable gases, vapors or mists

Zone 1 equivalent to Category 2G
Area in which an atmosphere at risk of explosion as a mixture of air and inflammable gases, vapors or mists can form occasionally during normal operation.

## Inflammable dusts

Zone 21 equivalent to Category 2D
Area in which an atmosphere at risk of explosion in the form of a cloud of inflammable dust contained in the air can form occasionally during normal operation

## Category 3

For devices, which guarantee a normal level of safety.
Intended for the case where an atmosphere at risk of explosion is to be expected rather infrequently and, if so, for only short periods.

## Inflammable gases, vapors or mists

## Zone 2 equivalent to Category 3G

Area in which an atmosphere at risk of explosion as a mixture of air and inflammable gases, vapors or mists does not normally occur at all or only for short periods during normal operation.

## Inflammable dusts

Zone 22 equivalent to Category 3D
Area in which an atmosphere at risk of explosion in the form of a cloud of inflammable dust contained in the air does not normally occur at all or only for short periods during normal operation.

## General information

According to 94/9/EC, a device that is to be used in an environment at risk of explosion may only be brought into the market if it satisfies the standards specified in the norm.
Compared with the previous directives, it must be noted that the specification refers not only to electrical but also to mechanical equipment (e.g. cylinders).
Devices are divided into categories and groups to accurately define the conditions of use. This definition is marked on the device and may appear as follows:


## Device group

There are 2 groups of devices.
Devices of Group I, Category M are for use in underground mines and their above ground equipment, which are at risk from firedamp and/or inflammable dusts. (This is not given further coverage in this document).
All other areas at risk of explosion are combined in Device Group II.

## Identifier

EEx defines that this is an electrical device.

## Ignition protection class

This defines which measures are used to ensure explosion protection.
The following ignition protection classes are used by AIRTEC:
$\mathbf{m}=$ Encapsulation, ia = Intrinsic safety, $\mathbf{c}=$ Safe by design
Other ignition protection classes are defined in EN 50014: 1997. The abbreviations are currently under review discussion. It should be noted that devices in ignition protection class ia may only be supplied from circuits that are certified to be intrinsically safe.

## Explosion group

Device group II is sub-divided into Explosion Groups A, B or C.
This classification is dependent on the typical material properties of the gases and vapors that occur.
The hazard level of materials increases from Explosion Group IIA to IIC. The requirements for the devices increase accordingly. If a device is approved for IIC, it can be used for all other explosion groups. Alternatively, the chemical formula or the name of the material can be stated here.

## Temperature class

It must be ensured that the ignition temperature of an inflammable material is not reached during operation. For this purpose, the maximum surface temperature of a device must be less than the minimum ignition temperature. For this reason, the maximum surface temperature of equipment for use with inflammable gases, vapors or mists is specified in temperature classes. For dusty environments, the maximum surface temperature is specified in ${ }^{\circ} \mathrm{C}$.

| Temperature class | Maximum permissible surface temperature of the equipment ( ${ }^{\circ} \mathbf{C}$ ) |
| :---: | :---: |
| T1 | 450 |
| T2 | 300 |
| T3 | 200 |
| T4 | 135 |
| T5 | 100 |
| T6 | 85 |

The following AIRTEC products are available in explosion-proof design for Device Group II in accordance with 94/9/EC.
The following list is intended to provide an overview. Attention must be paid to the Operating Instructions and Declaration of Conformity before commissioning. These can be provided on request.

## Electrically operated valves

| Series | Functions | Classification | Special features | Catalogue/ NPTF folder page |
| :---: | :---: | :---: | :---: | :---: |
| MS-18/MS-98 | 310 | III 2GD c T5 T $100^{\circ} \mathrm{C}$ | Valves are equipped with special actuators. <br> Dimensional changes and technical data can be seen in the following pages. <br> Compressed air in accordance with ISO 8573-1:2001 Class 74free of any aggressive particles $\begin{aligned} & \text { TMedium }-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ & \text { Tamb }-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \end{aligned}$ | 4.040/1.039 |
| M-04 | 310, 311, 320, 510, 511, 520, 530, 533, 534 |  |  | 4.080 |
| ME-04 | 311, 511 |  |  |  |
| M-05/M-95 | 310, 311, 320, 510, 511, 520, 530, 533, 534 |  |  | 4.110/1.040 |
| ME-05 | 311, 320, 511, 520 |  |  | 4.110 |
| MO-05 | 311 |  |  | 4.110 |
| M-07/M-97 | $310,311,320,510,511,520,530,533,534$ |  |  | 4.151/1.043 |
| MO-07 | 311 |  |  | 4.151 |
| ME-07 | 311, 320, 511, 520, 530 |  |  | 4.151 |
| MG-07 | 510, 520, 530, 533, 534 |  |  | - |
| MN-06 | 310, 311, 320, 510, 511, 520, 530, 533 |  |  | 5.020 |
| M-22 | 310, 311, 320, 510, 511, 520, 530, 533, 534 |  |  | 4.181 |
| ME-22 | 311, 520 |  |  |  |
| MO-22 | 310, 311 |  |  |  |
| KN-05 | 310, 311, 510, 511, 520, 530, 533, 534 |  |  | 5.040 |
| KNE-05 | 511 |  |  |  |
| KM-09/KM-99 | 510, 511, 520, 530, 533, 534 |  |  | 4.120/1.027 |
| KM-10/KM-90 | 510, 511, 520, 530, 533, 534 |  |  | 4.161/1.033 |
| KME-10 | 520, 530, 533 |  |  | - |
| MI-01 | 510, 511, 520, 530, 533 |  |  | 5.061 |
| MI-02 | 510, 520, 530, 533 |  |  | 5.081 |
| MI-03 | 510, 511, 520, 530, 533 |  |  | 5.101 |

## Pneumatically operated valves

| Series | Functions | Classification | Special features | Example order number | Catalogue page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P-04 | 311, 511, 530, 533, 534 | $112 \mathrm{GD} \mathrm{c} \mathrm{T5} \mathrm{~T} 100^{\circ} \mathrm{C}$ | Compressed air in accordance with ISO 8573-1:2001 Class 74free of any aggressive particles <br> TMedium $\begin{aligned} & -10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ & \text { Tamb } \\ & -10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \end{aligned}$ | P-04-311-ATEX | - |
| P-05 | $\begin{aligned} & 310,311 / 2,320,510,511 \text {, } \\ & 520,530,533,534 \end{aligned}$ |  |  | P-05-310-ATEX | 3.060 |
| P-07 | $\begin{aligned} & 310,311 / 2,320,510,511, \\ & 520,530,533,534 \end{aligned}$ |  |  | P-07-310-ATEX | 3.080 |
| PG-07 | 510, 520, 530, 533, 534 |  |  | - | - |
| P-12 | 310, 311, 320, 510, 511, 520, 534 |  |  | P-12-310-ATEX | 3.100 |
| L-25 | 310, 311, 320, 510, 520 |  |  | L-25-310-ATEX | 3.020 |
| L-28 | 310, 311, 320, 510, 511, 520 |  |  | L-28-310-ATEX | 3.040 |
| PI-01 | 510, 511, 520 |  |  | PI-01-510-ATEX | - |
| PI-02 | 510, 520, 530, 533, 534 |  |  | PI-02-510-ATEX | - |
| Pl-03 | 510, 520, 530, 533, 534 |  |  | PI-03-510-ATEX | - |

Other series can be provided on request.

## Manually operated valves

| Series | Functions | Classification of the pneumatic valves | Special features | Example order number | Catalogue/ NPTF folder page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HF-12 | 310 | II 2GD c T6 T $85^{\circ} \mathrm{C}$ | Compressed air in accordance with ISO 8573-1:2001 Class 74free of any aggressive particles | HF-12-310-ATEX | 2.101 |
| HF-14/HF-94 | 310, 510 |  |  | HF-14-310-ATEX | 2.101/1.002 |
| HF-18/HF-98 | 310, 533 |  |  | HF-18-310-ATEX | 2.101/1.002 |
| HR-12 | on request |  |  | HR-12-...-ATEX | 2.102 |
| HR-14/HR-94 | 320, 530 |  | TMedium$\begin{aligned} & -10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ & \text { Tamb } \\ & -10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} \end{aligned}$ | HR-14-320-ATEX | 2.102/1.003 |
| HR-18/HR-98 | 520 |  |  | HR-18-520-ATEX | 2.102/1.003 |
| T-28 | 311 |  |  | T-28-311-ATEX | 2.123 |
| T-30 | 310 |  |  | T-30-310-ATEX | 2.125 |

## Quick exhaust valves

| Series | Functions | Classification of the pneumatic valves | Special features | Example order number | Catalogue page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SE-12 | - | II 2GD c T6 T $85^{\circ} \mathrm{C}$ | Compressed air in accordance with ISO 8573-1:2001 Class 74free of any aggressive particles$\begin{aligned} & \text { TMedium } \\ & -10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ & \text { Tamb } \\ & -10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \end{aligned}$ | SE-12-ATEX | 8.160 |
| SE-14 | - |  |  | SE-14-ATEX | 8.160 |
| SE-18 | - |  |  | SE-18-ATEX | 8.160 |
| SE-98 | - |  |  | SE-98-ATEX | 8.160 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Speed regulation plates for valves acc. to NAMUR

| Series | Classification | Special features | Example order number | Catalogue page |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { KN-063-DRH } \\ & \text { KN-063-DRS } \end{aligned}$ | $\begin{aligned} & \text { II 2GD c T5 T } 100^{\circ} \mathrm{C} \\ & -10^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq 50^{\circ} \mathrm{C} \end{aligned}$ | Compressed air in accordance with ISO 8573-1:2001 Class 74free of any aggressive particles | KN-063-DRH-ATEX | 5.042 |
| $\begin{aligned} & \text { KN-065-DRH } \\ & \text { KN-065-DRS } \end{aligned}$ |  | $\begin{aligned} & \text { TMedium }-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \\ & \text { Tamb }-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C} \end{aligned}$ |  |  |

The following accessories are approved for the valves:

| Manifolds: | $\mathrm{R}-281 / \mathrm{n}, \mathrm{R}-283 / \mathrm{n}, \mathrm{R}-181 / \mathrm{n}, \mathrm{R}-183 / \mathrm{n}$, |
| :--- | :--- |
|  | $\mathrm{R}-141 / \mathrm{n}, \mathrm{R}-143 / \mathrm{n}, \mathrm{RF}-05, \mathrm{RF}-07$ |
| Hollow bolt: | $\mathrm{H}-281, \mathrm{H}-283, \mathrm{H}-183$, |
|  | $\mathrm{H}-143, \mathrm{HI}-143, \mathrm{HI}-183$ |
| Blind plates: | $\mathrm{R}-281-\mathrm{V}, \mathrm{R}-283-\mathrm{V}, \mathrm{R}-181-\mathrm{V}, \mathrm{R}-183-\mathrm{V}$, |
|  | $\mathrm{RF}-09-\mathrm{V}, \mathrm{RF}-10-\mathrm{V}, \mathrm{R}-141-\mathrm{V}, \mathrm{RF}-04-\mathrm{V}$, |
|  | $\mathrm{RF}-\mathrm{C}-07-\mathrm{V}, \mathrm{R}-143-\mathrm{V}, \mathrm{MG}-07-\mathrm{V}$ |

R-281/n, R-283/n, R-181/n,R-183/n, R-141/n, R-143/n, RF-05, RF-07
Hollow bolt: $\mathrm{H}-281, \mathrm{H}-283, \mathrm{H}-183$, H-143, HI-143, HI-183 RF-09-V, RF-10-V, R-141-V, RF-04-V, RF-C-07-V, R-143-V, MG-07-V

| Brackets: | R-281-W, R-181-W, R-141-W |
| :--- | :--- |
| Modular manifolds: | RF-09/n, RF-10/n, RF-19-E, |
|  | RF-09-E1, RF-10-E1, RF-09-E2, |
|  | RF-10-E2, RF-09-Z1, RF-10-Z1, |
|  | RF-09-Z4, RF-10-Z4, |
|  | RF-24, RF-C/n |
| Seal plate: | RF-19-01 |

## Cylinders

| Series | Classification | Special features | Example order number | Catalogue page |
| :---: | :---: | :---: | :---: | :---: |
| XL | $\begin{aligned} & \text { ॥ 2GD c T5 T } 100^{\circ} \mathrm{C} \\ & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq 80^{\circ} \mathrm{C} \end{aligned}$ | Compressed air in accordance with ISO 8573-1:2001 Class 74- <br> At $V>1 \mathrm{~m} / \mathrm{s}$ Class 744 <br> free of any aggressive particles <br> Max permissible energy in the end positions: $\begin{aligned} & \varnothing \quad 32-0,1 \mathrm{~J}, \phi 40 \text { and } 50-0,2 \mathrm{~J}, \\ & \varnothing \quad 63-0,5 \mathrm{~J}, \phi 80-0,9 \mathrm{~J}, \\ & \varnothing 100-1,2 \mathrm{~J}, \phi 125-5 \mathrm{~J} \end{aligned}$ | XL-040-0320-000-ATEX | 9.009 |
| XG | $\begin{aligned} & \\| 2 \mathrm{GD} \mathrm{C} \mathrm{~T} \text { T } 100^{\circ} \mathrm{C} \\ & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }}+80^{\circ} \mathrm{C} \end{aligned}$ | Compressed air in accordance with ISO 8573-1:2001 Class 74At $\mathrm{V}>1 \mathrm{~m} / \mathrm{s}$ Class 744 free of any aggressive particles | XG-160-0250-000-ATEX | 9.030 |
| CX |  |  | CX-032-0250-000-ATEX | 9.180 |
| HM |  |  | HM-016-025-ATEX | 9.081 |
| CM |  |  | CM-16-025-ATEX | 9.170 |

## The following accessories are approved for the cylinders:

Flexible coupling

Rod eye
Rod clevis Piston rod nut

FK
FO and RO up to Vmax 1 m/s
FD and RD
FE and RL

Cylinder fixings
XLB- $\varnothing$-01, XLB- $\varnothing$-02, XLB- $\varnothing$-03,
XLB- $\varnothing$-04, XLB- $\phi-05$, XLB- $\phi-06$,
XLB- $\varnothing$ - 07, XLB- $\phi-08$, XLB- $\phi-09$,
XLB- $\varnothing$-10, XLB- $\varnothing$-12

## Rodless cylinders

| Series | Classification | Special features | Example order number | Catalogue page |
| :---: | :---: | :---: | :---: | :---: |
| ZX | $\begin{aligned} & \text { II 2G T6 T } 85^{\circ} \mathrm{C}, \\ & -20^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {amb }} \leq 60^{\circ} \mathrm{C} \end{aligned}$ | Compressed air in accordance with ISO 8573-1:2001 Class 74free of any aggressive particles $V_{\text {max }} 1 \mathrm{~m} / \mathrm{s}$ <br> TMedium $-10^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ <br> Tamb $-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ | ZX-25-S-0500-01ATEX | 10.140 |

The following accessories are approved for the cylinders:
Head mount
ZXB-Ø-01
ZXB-Ø-02
Trunnion mount
ZXB-Ø-10

## Proximity Sensors

| Series | Classification | Order number | Catalogue page |
| :--- | :--- | :--- | :---: |
| ZS | II 3G Ex nA T4 |  |  |
|  | II 3D Ex tD A22 IP67 T $125^{\circ} \mathrm{C}$ | ZS-7300 | 9.221 |
|  | EX II 3D Ex tc IIC T125 ${ }^{\circ} \mathrm{C}$ Dc X |  |  |

## Electrically operated valves

## in $\varepsilon_{x}$-proof design

Valves from the (e.g. MS-98, M-95, others see table page 10.183) ranges can be provided in explosion proof design in accordance with 94/9/EC (ATEX) for device group II.
For this purpose, special valves are equipped with alternative electrical equipment. The dimensional changes of these components, which are mounted on the valve housing, can be seen on the following pages.
The valves are supplied in an assembled state, complete with valve, as the approval relates both to the electrical and the mechanical components. Individual parts may only be supplied for replacement purposes.
When ordering, the number of the required design must be added to the valve order number, or the required version must be noted in the item text.

Example 1: $\quad \mathrm{M}-05-510-\mathrm{HN}-E x 037-24 \mathrm{~V}=\quad$ Example 2: $\mathrm{M}-95-510-\mathrm{HN}$
Solenoid valve 5/2-way 1/8 NPTF, explosion proof design Ex037 Control voltage $24 \mathrm{~V}=$.
The specified technical boundary conditions are to enable the user to make a selection. The operating instructions for the valve and the electrical equipment must be taken into account before putting into operation. These are included with each valve and we would be pleased to send them to you on request by quoting Order No. 54-ATEX-01.

| Version | 23-SP-037-012-xx | 23-SP-037-025-xx | 23-SP-037-027-xx | 23-SP-038-01-912 | 23-SP-040-B12 | 23-SP-040-B27 | 23-SP-041-A12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Width | 30 mm |  |  |  |  |  | 22 mm |
| Ignition protection class | Encapsulated with casting compound mb (gases) mb tb (dust) |  |  | Intrinsically safe ia (gases) t (dust) | Non-sparking device nA (gases) tc (dust) |  |  |
| Classification | II 2G Ex mb IIC T5 <br> II 2D Ex mb tb IIIC $795^{\circ} \mathrm{C}$ IP65 |  |  | II 2G Ex ia IIC T6 Ga ( $\leq 28 \mathrm{VDC}$ ) \|| 2G Ex ia IIB T6 Ga ( $\leq 32 V D C$ ) II 2D Ext IIIC T $80^{\circ} \mathrm{C}$ Db IP65 | II 3G Ex nA IIC T5 Gc II 3D Ex tc IIIC T95 ${ }^{\circ} \mathrm{C}$ Dc IP65 |  | \|| 3G Ex nA IIC T5 Gc X || 3D Ex tc IIIC T5 Dc X |
| Rated voltage | 24 VDC | 110... 120 VAC | 230 VAC | $\mathrm{U} \leqq 28 \mathrm{VDC} / \mathrm{U} \leqq 32 \mathrm{VDC}$ | 24 VDC | 230 VAC | 24 VDC |
| Rated current | 136 mA | 27 mA | 14 mA | $\mathrm{I} \leqq 115 \mathrm{~mA} / \mathrm{I} \leqq 195 \mathrm{~mA}$ | 112 mA | $15 \mathrm{~mA} \ldots 18 \mathrm{~mA}$ | 120 mA |
| Rated power | 3,3 W | 3 VA | $3,1 \mathrm{VA}$ | - | 2,7 W | 4 VA | 3 W |
| Cable length | $\begin{gathered} \mathrm{xx}: 03=3 \mathrm{~m} \text { (standard) } \\ \mathrm{xx}: 05=5 \mathrm{~m} \\ \mathrm{xx}: 10=10 \mathrm{~m} \end{gathered}$ |  |  | incl. connector |  |  | without connector* ${ }^{*}$ |
| Medium | Compressed air in accordance with ISO-8573-1: 2001, Class 74 Free of any aggressive particles |  |  |  |  |  |  |
| Temperature range | $-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ | + $50{ }^{\circ} \mathrm{C}$ | $-15^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ |
| Ambient Battery fitted | $-20^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$ |  |  | - |  |  | - |
| Temperature range Medium | $-10^{\circ} \mathrm{C} \ldots+50{ }^{\circ} \mathrm{C}$ (Mounting on manifold $-10^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
| Pressure range | depending on armature |  |  |  |  |  |  |


| Version | 23-SP-036-012-03 | 23-SP-036-011-03 | 23-SP-045-B12 | 23-SP-045-B27 |
| :---: | :---: | :---: | :---: | :---: |
| Width | 22 mm |  | 36 mm |  |
| Ignition protection class | Encapsulated with casting compound mb (gases) mb tb (dust) |  | Flame proof enclosures/Encapsulated with casting compound d mb (gases) tb (dust) |  |
| Classification | II 2G Ex mb IIC T4 <br> II 2D Ex mb tb IIIC T130 ${ }^{\circ} \mathrm{C}$ IP65 |  | II 2G Ex d mb IIC T5 Gb II 2D Ex tb IIIC $795^{\circ} \mathrm{C}$ Db IP66 |  |
| Rated voltage | 24 VDC | 12 VDC | 24 VDC | 230 VAC |
| Rated current | 207 mA | 375 mA | 125 mA | 14 mA |
| Rated power | 5 W | 4,5 W | 3 W | 3,8 VA |
| Cable length | 3 m |  | Terminal box |  |
| Medium | Compressed air in accordance with ISO-8573-1: 2001, Class 74 Free of any aggressive particles |  |  |  |
| Temperature range | $-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ |  | $-50{ }^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ |  |
| Ambient Battery fitted | - |  | - |  |
| Temperature range Medium | $-10{ }^{\circ} \mathrm{C} \ldots+50{ }^{\circ} \mathrm{C}$ (Mounting on manifold -10 ${ }^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$ ) |  | - |  |
| Pressure range | depending on armature |  |  |  |

23-SP-036, Dimensions


23-SP-037, Dimensions


23-SP-038, Dimensions


23-SP-040, Dimensions


## 23-SP-045, Dimensions



## A Drawings

The method of projection within this catalouge is the first angle projection according to DIN ISO 5456-2.


First angle projection (Used in this catalogue)
Is based on the idea that the body is turned to the side. This means that a view from left is on the right hand side of the main view.


## Third angle projection

Normally used in USA and english speaking countries. Specify that a view from right has to be on the right hand side of the main view.

All dimensions in the drawings are generally in millimeters (mm) if not stated otherwise. The abbreviations SW, WS, or CH are the short form of wrench size.

## B Length

The following table assists in the conversion of the used mm dimension to inches.
For precise calculation please use the following formula:

```
mm to inch 1 mm = 0.03937 inch
inch to mm 1 inch = 25.4 mm
```

| mm | inch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.0039 | 3.8 | 0.1496 | 7.5 | 0.2953 | 11.2 | 0.4409 | 14.9 | 0.5866 | 290 | 11.417 |
| 0.2 | 0.0079 | 3.9 | 0.1535 | 7.6 | 0.2992 | 11.3 | 0.4449 | 15.0 | 0.5906 | 300 | 11.811 |
| 0.3 | 0.0118 | 4.0 | 0.1575 | 7.7 | 0.3031 | 11.4 | 0.4488 | 20.0 | 0.7874 | 310 | 12.205 |
| 0.4 | 0.0157 | 4.1 | 0.1614 | 7.8 | 0.3071 | 11.5 | 0.4528 | 25.0 | 0.9843 | 320 | 12.598 |
| 0.5 | 0.0197 | 4.2 | 0.1654 | 7.9 | 0.3110 | 11.6 | 0.4567 | 30.0 | 1.1811 | 330 | 12.992 |
| 0.6 | 0.0236 | 4.3 | 0.1693 | 8.0 | 0.3150 | 11.7 | 0.4606 | 35.0 | 1.3780 | 340 | 13.386 |
| 0.7 | 0.0276 | 4.4 | 0.1732 | 8.1 | 0.3189 | 11.8 | 0.4646 | 40.0 | 1.5748 | 350 | 13.780 |
| 0.8 | 0.0315 | 4.5 | 0.1772 | 8.2 | 0.3228 | 11.9 | 0.4685 | 45.0 | 1.7717 | 360 | 14.173 |
| 0.9 | 0.0354 | 4.6 | 0.1811 | 8.3 | 0.3268 | 12.0 | 0.4724 | 50.0 | 1.9685 | 370 | 14.567 |
| 1.0 | 0.0394 | 4.7 | 0.1850 | 8.4 | 0.3307 | 12.1 | 0.4764 | 55.0 | 2.1654 | 380 | 14.961 |
| 1.1 | 0.0433 | 4.8 | 0.1890 | 8.5 | 0.3346 | 12.2 | 0.4803 | 60.0 | 2.3622 | 390 | 15.354 |
| 1.2 | 0.0472 | 4.9 | 0.1929 | 8.6 | 0.3386 | 12.3 | 0.4843 | 65.0 | 2.5591 | 400 | 15.748 |
| 1.3 | 0.0512 | 5.0 | 0.1969 | 8.7 | 0.3425 | 12.4 | 0.4882 | 70.0 | 2.7559 | 410 | 16.142 |
| 1.4 | 0.0551 | 5.1 | 0.2008 | 8.8 | 0.3465 | 12.5 | 0.4921 | 75.0 | 2.9528 | 420 | 16.535 |
| 1.5 | 0.0591 | 5.2 | 0.2047 | 8.9 | 0.3504 | 12.6 | 0.4961 | 80.0 | 3.1496 | 430 | 16.930 |
| 1.6 | 0.0630 | 5.3 | 0.2087 | 9.0 | 0.3543 | 12.7 | 0.5000 | 85.0 | 3.3465 | 440 | 17.323 |
| 1.7 | 0.0669 | 5.4 | 0.2126 | 9.1 | 0.3583 | 12.8 | 0.5039 | 90.0 | 3.5433 | 450 | 17.717 |
| 1.8 | 0.0709 | 5.5 | 0.2165 | 9.2 | 0.3622 | 12.9 | 0.5079 | 95.0 | 3.7402 | 460 | 18.110 |
| 1.9 | 0.0748 | 5.6 | 0.2205 | 9.3 | 0.3661 | 13.0 | 0.5118 | 100 | 3.937 | 470 | 18.504 |
| 2.0 | 0.0787 | 5.7 | 0.2244 | 9.4 | 0.3701 | 13.1 | 0.5157 | 110 | 4.331 | 480 | 18.898 |
| 2.1 | 0.0827 | 5.8 | 0.2283 | 9.5 | 0.3740 | 13.2 | 0.5197 | 120 | 4.724 | 490 | 19.291 |
| 2.2 | 0.0866 | 5.9 | 0.2323 | 9.6 | 0.3780 | 13.3 | 0.5236 | 130 | 5.119 | 500 | 19.685 |
| 2.3 | 0.0906 | 6.0 | 0.2362 | 9.7 | 0.3819 | 13.4 | 0.5276 | 140 | 5.512 | 510 | 20.079 |
| 2.4 | 0.0945 | 6.1 | 0.2402 | 9.8 | 0.3858 | 13.5 | 0.5315 | 150 | 5.906 | 520 | 20.472 |
| 2.5 | 0.0984 | 6.2 | 0.2441 | 9.9 | 0.3898 | 13.6 | 0.5354 | 160 | 6.230 | 530 | 20.866 |
| 2.6 | 0.1024 | 6.3 | 0.2480 | 10.0 | 0.3937 | 13.7 | 0.5394 | 170 | 6.693 | 540 | 21.260 |
| 2.7 | 0.1063 | 6.4 | 0.2520 | 10.1 | 0.3976 | 13.8 | 0.5433 | 180 | 7.087 | 550 | 21.654 |
| 2.8 | 0.1102 | 6.5 | 0.2559 | 10.2 | 0.4016 | 13.9 | 0.5472 | 190 | 7.480 | 560 | 22.047 |
| 2.9 | 0.1142 | 6.6 | 0.2598 | 10.3 | 0.4055 | 14.0 | 0.5512 | 200 | 7.874 | 570 | 22.441 |
| 3.0 | 0.1181 | 6.7 | 0.2638 | 10.4 | 0.4094 | 14.1 | 0.5551 | 210 | 8.268 | 580 | 22.835 |
| 3.1 | 0.1220 | 6.8 | 0.2677 | 10.5 | 0.4134 | 14.2 | 0.5591 | 220 | 8.661 | 590 | 23.228 |
| 3.2 | 0.1260 | 6.9 | 0.2717 | 10.6 | 0.4173 | 14.3 | 0.5630 | 230 | 9.056 | 600 | 23.622 |
| 3.3 | 0.1299 | 7.0 | 0.2756 | 10.7 | 0.4213 | 14.4 | 0.5669 | 240 | 9.449 | 700 | 27.559 |
| 3.4 | 0.1339 | 7.1 | 0.2795 | 10.8 | 0.4252 | 14.5 | 0.5709 | 250 | 9.843 | 750 | 29.528 |
| 3.5 | 0.1378 | 7.2 | 0.2835 | 10.9 | 0.4291 | 14.6 | 0.5748 | 260 | 10.236 | 800 | 31.496 |
| 3.6 | 0.1417 | 7.3 | 0.2874 | 11.0 | 0.4331 | 14.7 | 0.5787 |  | 10.630 | 900 | 35.433 |
| 3.7 | 0.1457 | 7.4 | 0.2913 | 11.1 | 0.4370 | 14.8 | 0.5827 | 280 | 11.024 | 1000 | 39.370 |

## C Flow rate

The flow rate values given in the AIRTEC catalouge are in $\mathrm{NI} / \mathrm{min}$. and based on a pressure drop from a pressure inlet 6 bar ( 87 psi ) to a pressure outlet of 5 bar ( 72.5 psi ). The flow rates are measured with the following experimental circuit.


The table below simplifies the calculation of Cv and Kv values.
For precise calculation please use the following formula:
$\mathrm{NI} /$ min to $\mathrm{K}_{V} \quad \mathrm{~K}_{V}=\mathrm{NI} / \mathrm{min} / 1100$
$\mathrm{NI} /$ min to $\mathrm{C}_{\mathrm{V}} \quad \mathrm{C}_{\mathrm{V}}=\mathrm{NI} / \mathrm{min} / 984$

| $\mathbf{N} \mathbf{I} \mathbf{m i n}$. | $\mathbf{K}_{\boldsymbol{V}}$ | $\mathbf{C}_{\boldsymbol{V}}$ |
| ---: | :---: | :---: |
| 10 | 0.0091 | 0.0102 |
| 20 | 0.0182 | 0.0203 |
| 30 | 0.0273 | 0.0305 |
| 40 | 0.0364 | 0.0407 |
| 50 | 0.0455 | 0.0508 |
| 60 | 0.0545 | 0.0610 |
| 70 | 0.0636 | 0.0711 |
| 80 | 0.0727 | 0.0813 |
| 90 | 0.0818 | 0.0915 |
| 100 | 0.0900 | 0.1016 |
| 110 | 0.1000 | 0.1118 |
| 120 | 0.1091 | 0.1220 |
| 130 | 0.1182 | 0.1321 |
| 140 | 0.1273 | 0.1423 |
| 150 | 0.1364 | 0.1524 |
| 160 | 0.1455 | 0.1626 |
| 170 | 0.1545 | 0.1728 |
| 180 | 0.1636 | 0.1829 |
| 190 | 0.1727 | 0.1931 |
| 200 | 0.1818 | 0.2033 |
| 250 | 0.2273 | 0.2541 |
| 300 | 0.2727 | 0.3049 |
| 350 | 0.3182 | 0.3557 |
| 400 | 0.3636 | 0.4065 |
| 450 | 0.4091 | 0.4573 |
| 500 | 0.4545 | 0.5081 |
| 550 | 0.5000 | 0.5589 |
| 600 | 0.5455 | 0.6098 |
| 650 | 0.5909 | 0.6606 |
| 700 | 0.6364 | 0.7114 |
| 750 | 0.6818 | 0.7622 |
| 800 | 0.7273 | 0.8130 |
| 850 | 0.7727 | 0.8638 |
| 900 | 0.8182 | 0.9146 |
| 950 | 0.8636 | 0.9654 |
| 1000 | 0.9090 | 1.0163 |
| 1050 | 0.9545 | 1.0671 |
| 1100 | 1.0000 | 1.1179 |
| 1150 | 1.0450 | 1.1687 |
| 1200 | 1.0900 | 1.2195 |
| 1250 | 1.1364 | 1.2703 |
| 1300 | 1.1818 | 1.3211 |
| 1350 | 1.2273 | 1.3720 |
| 1400 | 1.2727 | 1.4228 |
| 1450 | 1.3182 | 1.4736 |
|  |  |  |


| NI/min. | $\mathbf{K}_{\boldsymbol{V}}$ | $\mathbf{C}_{\boldsymbol{V}}$ |
| :---: | :---: | :---: |
| 1500 | 1.3636 | 1.5244 |
| 1550 | 1.4091 | 1.5752 |
| 1600 | 1.4545 | 1.6260 |
| 1700 | 1.5455 | 1.7276 |
| 1800 | 1.6364 | 1.8293 |
| 1900 | 1.7273 | 1.9309 |
| 2000 | 1.8182 | 2.0325 |
| 2100 | 1.9091 | 2.1341 |
| 2200 | 2.0000 | 2.2358 |
| 2300 | 2.0909 | 2.3374 |
| 2400 | 2.1818 | 2.4390 |
| 2500 | 2.2727 | 2.5407 |
| 2600 | 2.3636 | 2.6423 |
| 2700 | 2.4545 | 2.7439 |
| 2800 | 2.5455 | 2.8455 |
| 2900 | 2.6364 | 2.9472 |
| 3000 | 2.7273 | 3.0488 |
| 3100 | 2.8182 | 3.1504 |
| 3200 | 2.9091 | 3.2520 |
| 3300 | 3.0000 | 3.3537 |
| 3400 | 3.0909 | 3.4553 |
| 3500 | 3.1818 | 3.5569 |
| 3750 | 3.4091 | 3.8110 |
| 4000 | 3.6364 | 4.0650 |
| 4250 | 3.8636 | 4.3191 |
| 4500 | 4.0909 | 4.5732 |
| 4750 | 4.3182 | 4.8272 |
| 5000 | 4.5455 | 5.0813 |
| 5250 | 4.7727 | 5.3354 |
| 5500 | 5.0000 | 5.5894 |
| 5750 | 5.2273 | 5.8435 |
| 0000 | 5.4545 | 6.0976 |
| 6250 | 5.6818 | 6.3516 |
| 6500 | 5.9091 | 6.6057 |
| 6750 | 6.1364 | 6.8598 |
| 7000 | 6.3636 | 7.1138 |
| 7250 | 6.5909 | 7.3679 |
| 7500 | 6.8182 | 7.6220 |
| 7750 | 7.0455 | 7.8760 |
| 8000 | 7.2727 | 8.1301 |
| 8250 | 7.5000 | 8.3841 |
| 8500 | 7.7273 | 8.6382 |
| 8750 | 7.9545 | 8.8923 |
| 9000 | 8.1818 | 9.1463 |
|  |  |  |
|  |  |  |
|  |  |  |

## D Pressure

The data contained in the AIRTEC catalogue for pressures are given in bar.
The table below shows conversion to psi.
$1 \mathrm{bar}=100 \mathrm{kPa}=14.5 \mathrm{psi}=10 \mathrm{~N} / \mathrm{cm}^{2}$
$1 \mathrm{psi}=0.069 \mathrm{bar}=6896.5 \mathrm{~Pa}=1 \mathrm{lb} . / \mathrm{sq}$. in.
$1 \mathrm{~Pa}=0.00001 \mathrm{bar}=0.000145 \mathrm{psi}=1 \mathrm{~N} / \mathrm{m}^{2}$

| bar | psi | $\mathbf{k P a}$ | bar | psi | $\mathbf{k P a}$ | $\mathbf{b a r}$ | psi | kPa |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.05 | 0.725 | 5 | 0.90 | 13.050 | 90 | 7.00 | 101.500 | 700 |
| 0.10 | 1.450 | 10 | 1.00 | 14.500 | 100 | 7.50 | 108.750 | 750 |
| 0.15 | 2.175 | 15 | 1.50 | 21.750 | 150 | 8.00 | 116.000 | 800 |
| 0.20 | 2.900 | 20 | 2.00 | 29.000 | 200 | 8.50 | 123.250 | 850 |
| 0.25 | 3.625 | 25 | 2.50 | 36.250 | 250 | 9.00 | 130.500 | 900 |
| 0.30 | 4.350 | 30 | 3.00 | 43.500 | 300 | 9.50 | 137.750 | 950 |
| 0.35 | 5.075 | 35 | 3.50 | 50.750 | 350 | 1000 | 145.000 | 1000 |
| 0.40 | 5.800 | 40 | 4.00 | 58.000 | 400 | 10.50 | 152.250 | 1050 |
| 0.45 | 6.525 | 45 | 4.50 | 65.250 | 450 | 11.00 | 159.500 | 1100 |
| 0.50 | 7.250 | 50 | 5.00 | 72.500 | 500 | 11.50 | 166.750 | 1150 |
| 0.60 | 8.700 | 60 | 5.50 | 79.750 | 550 | 12.00 | 174.000 | 1200 |
| 0.70 | 10.150 | 70 | 6.00 | 87.000 | 600 | 14.00 | 203.000 | 1400 |
| 0.80 | 11.600 | 80 | 6.50 | 94.250 | 650 | 16.00 | 232.000 | 1600 |

## E Temperature

The temperature values given in the AIRTEC-catalogue are in ${ }^{\circ} \mathrm{C}$. The following table assists in the conversion to ${ }^{\circ} \mathrm{F}$ or Kelvin ( ${ }^{\circ} \mathrm{K}$ ).

Formula ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
$\frac{\mathrm{C} \times 9}{5}+32={ }^{\circ} \mathrm{F}$

Formula ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
$(F-32) \times \frac{5}{9}={ }^{\circ} \mathrm{C}$

| ${ }^{\circ} \mathbf{C} \rightarrow{ }^{\circ} \mathbf{F}$ |  | ${ }^{\circ} \mathbf{C} \rightarrow{ }^{\circ} \mathbf{F}$ |  |
| ---: | ---: | ---: | ---: |
| -100 | -148 | 75 | 167 |
| -95 | -139 | 80 | 176 |
| -90 | -130 | 85 | 185 |
| -85 | -121 | 90 | 194 |
| -80 | -112 | 100 | 212 |
| -75 | -103 | 110 | 230 |
| -70 | -94 | 120 | 248 |
| -65 | -85 | 130 | 266 |
| -60 | -76 | 140 | 284 |
| -55 | -67 | 150 | 302 |
| -50 | -58 | 160 | 320 |
| -45 | -49 | 170 | 338 |
| -40 | -40 | 180 | 356 |
| -35 | -31 | 190 | 374 |
| -30 | -22 | 200 | 392 |
| -25 | -13 | 210 | 410 |
| -20 | -4 | 220 | 428 |
| -15 | 5 | 230 | 446 |
| -10 | 14 | 240 | 464 |
| -5 | 23 | 250 | 482 |
| 0 | 32 | 260 | 500 |
| 5 | 41 | 270 | 518 |
| 10 | 50 | 280 | 536 |
| 15 | 59 | 290 | 554 |
| 20 | 68 | 300 | 572 |
| 25 | 77 | 310 | 590 |
| 30 | 86 | 320 | 608 |
| 35 | 95 | 330 | 626 |
| 40 | 104 | 340 | 644 |
| 45 | 113 | 350 | 662 |
| 50 | 122 | 360 | 680 |
| 55 | 131 | 370 | 698 |
| 60 | 140 | 380 | 716 |
| 65 | 149 | 390 | 734 |
| 70 | 158 | 400 | 752 |
|  |  |  |  |


| ${ }^{\circ} \mathbf{F} \rightarrow{ }^{\circ} \mathbf{C}$ |  | ${ }^{\circ} \mathbf{F} \rightarrow{ }^{\circ} \mathbf{C}$ |  |
| ---: | ---: | ---: | ---: |
| -100 | -73.3 | 70 | 21.1 |
| -95 | -70.6 | 75 | 23.9 |
| -90 | -67.8 | 80 | 26.7 |
| -85 | -65.0 | 90 | 32.2 |
| -80 | -62.2 | 100 | 37.8 |
| -75 | -59.4 | 110 | 43.3 |
| -70 | -56.7 | 120 | 48.9 |
| -65 | -53.9 | 130 | 54.4 |
| -60 | -51.1 | 140 | 60.0 |
| -55 | -48.3 | 150 | 65.6 |
| -50 | -45.6 | 160 | 71.1 |
| -45 | -42.8 | 170 | 76.7 |
| -40 | -40.0 | 180 | 82.2 |
| -35 | -37.2 | 190 | 87.8 |
| -30 | -34.4 | 200 | 93.3 |
| -25 | -31.7 | 210 | 98.9 |
| -20 | -28.9 | 220 | 104.4 |
| -15 | -26.1 | 230 | 110.0 |
| -10 | -23.3 | 240 | 115.6 |
| -5 | -20.6 | 250 | 121.1 |
| 0 | -17.8 | 260 | 126.7 |
| 5 | -15.0 | 270 | 132.2 |
| 10 | -12.2 | 280 | 137.8 |
| 15 | -9.4 | 290 | 143.3 |
| 20 | -6.7 | 300 | 148.9 |
| 25 | -3.9 | 310 | 154.4 |
| 30 | -1.1 | 320 | 160.0 |
| 32 | 0.0 | 330 | 165.6 |
| 35 | 1.7 | 340 | 171.1 |
| 40 | 4.4 | 350 | 176.7 |
| 45 | 7.2 | 360 | 182.2 |
| 50 | 10.0 | 370 | 187.8 |
| 55 | 12.8 | 380 | 193.3 |
| 60 | 15.6 | 390 | 198.9 |
| 65 | 18.3 | 400 | 204.4 |
|  |  |  |  |


| ${ }^{\circ} \mathbf{C}$ | ${ }^{\circ} \mathbf{F}$ | ${ }^{\circ} \mathbf{K}$ |
| ---: | ---: | ---: |
| -20 | -4 | 253.15 |
| -15 | 5 | 258.15 |
| -10 | 14 | 263.15 |
| -5 | 23 | 268.15 |
| 0 | 32 | 273.15 |
| 5 | 41 | 278.15 |
| 10 | 50 | 283.15 |
| 15 | 59 | 288.15 |
| 20 | 68 | 293.15 |
| 25 | 77 | 298.15 |
| 30 | 86 | 303.15 |
| 35 | 95 | 308.15 |
| 40 | 104 | 313.15 |
| 45 | 113 | 318.15 |
| 50 | 122 | 323.15 |
| 55 | 131 | 328.15 |
| 60 | 140 | 333.15 |
| 65 | 149 | 338.15 |
| 70 | 158 | 343.15 |
| 75 | 167 | 348.15 |
| 80 | 176 | 353.15 |
| 85 | 185 | 358.15 |
| 90 | 194 | 363.15 |
| 95 | 203 | 368.15 |
| 100 | 212 | 373.15 |
| 105 | 221 | 378.15 |
| 110 | 230 | 383.15 |
| 115 | 239 | 388.15 |
| 120 | 248 | 393.15 |
| 125 | 257 | 398.15 |
| 130 | 266 | 403.15 |
| 135 | 275 | 408.15 |
| 140 | 284 | 413.15 |
| 145 | 293 | 418.15 |
| 150 | 302 | 423.15 |
|  |  |  |

## F SI - Basic units

| Description | Symbol | SI-unit | SI-name |
| :--- | :---: | :---: | :--- |
| Area | A | $\mathrm{m}^{2}$ | square meter |
| Current intensity | I | A | Ampere |
| Energy (work) | W | $\mathrm{J}, \mathrm{Nm}$ | Joule, Newton meter |
| Force | F | N | Newton |
| Length | I | m | meter |
| Mass | m | kg | kilogramme |
| Power | P | W | Watt |
| Pressure | p | Pa, bar | Pascal, bar |
| Speed | v | $\mathrm{m} / \mathrm{s}$ | meter per second |
| Temperature | T | K | Kelvin |
| Time | t | s | second |
| Torque | $\mathrm{Mt}^{\mathrm{t}} \mathrm{T}$ | Nm | Newton meter |
| Volume | V | $\mathrm{m}^{3}$ | cubic meter |
| Volume flow | $\dot{V}$ | $\mathrm{~m}^{3} / \mathrm{s}$ | cubic meter per second |

G Conversion chart (European/USA standards)

| Area | 1 sq. in. $1 \mathrm{~cm}^{2}$ 1 sq. ft. $1 \mathrm{~m}^{2}$ | $\begin{aligned} & =6.452 \mathrm{~cm}^{2} \\ & =0.155 \mathrm{sq} . \mathrm{in} . \\ & =0.0929 \mathrm{~m}^{2} \\ & =10.764 \mathrm{sq} . \mathrm{ft} . \end{aligned}$ | Speed Temperature | $1 \mathrm{ft} . / \mathrm{s}$. <br> $1 \mathrm{~m} / \mathrm{s}$ <br> $\Delta 1^{\circ} \mathrm{C}$ <br> $\Delta 1^{\circ} \mathrm{F}$ | $\begin{aligned} & =0,3048 \mathrm{~m} / \mathrm{s} \\ & =3,281 \mathrm{ft} . \mathrm{s} \\ & =1,7999{ }^{\circ} \mathrm{F}=1 \mathrm{~K} \\ & =0,5556{ }^{\circ} \mathrm{C}=0,5556 \mathrm{r} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Force | 1 lbf . | $=4.44822 \mathrm{~N}$ |  | $0^{\circ} \mathrm{C}$ | $=32{ }^{\circ} \mathrm{F}=273,15 \mathrm{~K}$ |
| Length | 1 mm | $=0.03937 \mathrm{in}$ | Volume | $1 \mathrm{cu} . \mathrm{in}$. | $=16.387 \mathrm{~cm}^{3}$ |
|  | 1 in | $=25.4 \mathrm{~mm}$ |  | $1 \mathrm{~cm}^{3}$ | $=0.0610 \mathrm{cu}$. in. |
|  | 1 ft | $=12 \mathrm{in}=0.3048 \mathrm{~m}$ |  | $1 \mathrm{cu} . \mathrm{ft}$. | $=28.317 \mathrm{dm}^{3}$ |
|  | 1 m | $=3.281 \mathrm{ft}$ |  | $1 \mathrm{dm}^{3}$ | $=0.0353 \mathrm{cu} . \mathrm{ft}$. |
|  | 1 yd | $=3 \mathrm{ft}=0.914398 \mathrm{~m}$ |  | 1 US-gallon | $=3.785 \mathrm{I}$ |
|  | 1 m | $=1.09362 \mathrm{yd}$ |  | 11 | $=0.2642$ US-gallon |
| Mass | 1 lb | $=0.4536 \mathrm{~kg}$ |  |  |  |
|  | 1 kg | $=2.2046 \mathrm{lb}$ |  |  |  |
|  | 1 oz | $=28.35 \mathrm{~g}$ |  |  |  |
|  | 1 g | $=0.0353 \mathrm{oz}$ |  |  |  |
| Pressure | 1 bar | $=14.5 \mathrm{psi}=100 \mathrm{kPa}$ |  |  |  |
|  | 1 psi | $=0.069 \mathrm{bar}$ |  |  |  |
|  |  | $=6.8965 \mathrm{kPa}$ |  |  |  |
|  | $1 \mathrm{lb} / \mathrm{sq} . \mathrm{ft}$ | $=47.88 \mathrm{~Pa}$ |  |  |  |
|  |  | $=0.0004788 \mathrm{bar}$ |  |  |  |
|  | 1 bar | $=2089 \mathrm{lb} / \mathrm{sq} . \mathrm{ft}$. |  |  |  |
|  | 1 Pa | $=0.0209 \mathrm{lb} / \mathrm{sq} . \mathrm{ft}$. |  |  |  |

## 1. Offer and Contract

Acceptance by Seller of Buyer's order is expressly made conditional on assent to these Terms and Conditions, either by written acknowledgement or by conduct of Buyer that recognizes the existence of the contract with respect to Goods described on this acknowledgement form.
These Terms and Conditions also serve as notice of Seller's objection to and rejection of any Terms and Conditions of purchase or sale included in Buyer's purchase order or other writing that are different from or additional to these Terms and Conditions.
Sales representatives are not authorized to bind Seller.
All written quotations automatically expire thirty (30) days from the date quoted unless otherwise specified.
2. Prices and Taxes

Prices are subject to change without notice at any time prior to acceptance of order on Seller's acknowledgement form. All prices are F.O.B. Chicago, Illinois unless otherwise agreed by Buyer and Seller in writing. Buyer agrees to pay all present and future U.S. federal, state and local tax obligations, including but not limited to sales, use and excise taxes. If Buyer claims that the Goods are exempt from any particular tax, Buyer must provide Seller with a tax exemption certificate acceptable to the tax authorities.
3. Cancellation Charges

No cancellations or changes of any kind in the purchase order shall be effective unless agreed to in writing by Seller. All changes are accepted subject to adjustment in prices and delivery dates. All cancellations are accepted subject to cancellation charges which will be determined by the Seller and will reflect, among other factors, the expenses already incurred and commitments made by the Seller, sales and administrative overhead and profits.
Seller shall have the absolute right to cancel the order upon (i) material breach of any of these Terms and Conditions by Buyer, or (ii) failure by Buyer to make any payment or (iii) insolvency of Buyer, the filing of voluntary petition in bankruptcy by Buyer, the filing of an involuntary petition to have the Buyer declared bankrupt, the appointment of a receiver or trustee for Buyer, the execution by Buyer of an assignment for the benefit of creditors, or (iv) the discontinuance of business by Buyer or the sale by Buyer of the bulk of its assets other than in the usual course of business. Upon cancellation, Seller shall be entitled to a cancellation charge as described above.
4. Shipment and Delivery

All delivery dates are estimates only. Seller's only obligation with respect to delivery dates shall be to use reasonable effort to meet same. All shipments shall be F.O.B Chicago, Illinois unless otherwise agreed in writing between Buyer and Seller. Title and risk of loss shall pass to Buyer at the F.O.B. point. Unless otherwise agreed in writing, Seller wili ship via surface transportation. Sell will not be liable for any delays, breakage, loss or damage after having made delivery in good order to the carrier Seller reserves the right to insure all shipments at Buyer's expense.
5. Force Majeure, Waiver

Seller shall not be liable for any delay to make delivery or failure to deliver due to any clause or contingency beyond the control of Seller (including but not limited to accidents, breakdowns, strikes, riots, sabotage, insurrections, war, delay or interruptions in or failure of sources of materials, supplies, labor, energy or transportation, acts of God or orders of any court, governmental body, authority or agency). Seller may, at its option, allocate available supplies among its customers, including Buyer, in any manner that Seller decides is fair and reasonable, extend the delivery time or cancel the contract for such Goods, in whole or in part. Such allocation, extension of delivery time or cancellation shall not affect the right of Seller to cover for any unpaid Goods previously delivered. IN NO EVENT SHALL SELLER BE LIABLE FOR ANY NCIDENTAL OR CONSEQUENTIAL DAMAGES OR FOR ANY OTHER LOSS, DAMAGE OR EXPENSE OF ANY KIND INCLUDING LOSS OF PROFITS ARISING IN CONNECTION WITH SUCH FAILURE OR DELAY IN DELIVERY.
6. Terms of Payment

Unless otherwise expressly agreed between Buyer and Seller in writing, terms of payment are net thirty (30) days after date of shipment. Seller reserves the right to alter or suspend credit terms and require C.O.D. or advance payment, whenever Seller has reasonable doubt as to Buyer's creditworthiness. If Buyer becomes delinquent in payment or refuses to accept C.O.D. shipments, Seller shall have the right, in addition to any other rights it may have, to cancel any order of Buyer's, without further deliveries and declare all unpaid amounts for Goods previously delivered immediately due and payable. Each shipment shall be considered a separate and independent transaction and payment therefore shall be made accordingly. Amounts past due shall be subject to a late charge of $1.5 \%$ per month. All costs and expenses incurred by Seller as result of non-payment or delinquent payment by Buyer, including collections costs, interest, and reasonable attorneys fees shall be paid by the Buyer.
7. Claims and Remedies

All claims for loss or damage in transit are to be made by Buyer directly to the carrier. No deduction of any kind from the invoice amount shall be made. Buyer shall inspect all Goods immediately upon their arrival and shall immediately give written notice to Seller of any claim that the Goods do not conform to the terms of the contract. Seller shall have reasonable access to inspect any allegedly non-conforming Goods. Buyer waives any right to assert any claim against Seller arising from any non-conformity of Goods which would have been observable on reasonable inspection or testing within thirty (30) days after delivery.
Written notice of any alleged defect within the warranty period must be presented to Seller immediately upon Buyer's discovery of the defect and Seller must be allowed in inspect the Goods while they are in the alleged defective condition. Operation of the Goods must be suspended until written clearance is issued by Seller for continued operation provided that Seller, upon receipt of written notice of an alleged defect, proceeds without unreasonable delay to remedy any defects coming within the warranty.
8. Warranty, Disclaimer, Limitation of Liability

General Warranty Terms Applicable To All Goods:
The above warranties by Seller do not extend to any Goods subject to (i) improper installation or storage, (ii) accident, damage, abuse or misuse, (iii) abnormal or unusual operating conditions or applications, (iv) operating conditions or applications above the rated capacity of the Goods, (v) operating conditions or applications not made known to Seller prior to the date of the agreement, or (vi) a purpose or application in any way different from that for which the Goods were designed. Seller's warranty does not extend to any Good or parts thereof that are not manufactured by Seller or that Buyer alters or modifies or that Buyer adds to or incorporates into Seller's Goods (including but not limited to controls, electronics, valves and other parts or equipment and only the warranty, if any, given by the manufacturer thereof, will apply. Seller's obligation under this warranty will not apply to any product which (i) is normally consumed in operations or (ii) has a normal life inherently shorter that the warranty period stated herein.
THE WARRANTY EXPRESSED HEREIN IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND IS IN LIEU OF ANY AND ALL OTHER OBLIGATIONS OR LIABILITY ON THE SELLER'S PART. UNDER NO CIRCUMSTANCES WILL SELLER BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES OR FIITY ANY OTHER LOSS, DAMAGE OR EXPENSE OF ANY KIND, INCLUDING LOSS OF PROFITS, ARISING IN CONNECTION WITH THE CONTRACT OR FOR ANY OTHER LOSS, DAMAGE OR EXPENSE OF ANY KIND, INCLUDING LOSS OF PROFITS, ARISING IN CONNECTION WITH THE CONTRACT OR WITH LIMITED TO EITHER (i) REPAIR OR REPLACEMENT OF DEFECTIVE PARTS OR GOODS, OR (ii) AT THE SELLER'S OPTION, RETURN OF THE GOODS TO SELLER AND REFUNDOF PURCHASE PRICE. SUCH REMEDY SHALL BE BUYER'S ENTIRE AND EXCLUSIVE REMEDY, IN THE EVENT OF BREACH OF WARRANTY OR NEGLIGENCE OF SELLER.
9. Confidentiality

All drawings, diagrams, specifications, and other materials furnished by Seller relating to the sale, installation, service or repair of Goods furnished hereunder and the information therein are proprietary to Seller. Buyer may not reproduce or distribute such materials without the written consent of Seller except to Buyer's employees who may use the material as part of their duties. All such materials relating to the Goods supplied by Seller (except information as may be established to be in the public domain or disclosed through judicial or government action) shall be received in confidence, and Buyer shall exercise reasonable care to hold all such information in confidence.
In the event Buyer's personnel visit Seller's plant or assembly facility or otherwise receive any proprietary to confidential information from Seller, said information shall be retained as confidential by Buyer and not disclosed to any third party without the written consent of Seller.
10. Limitation of Actions

Any cause of action arising from this agreement or the breach thereof must be commenced within one (1) year after the cause of action accrues

## 11. Applicable Law

The law governing the agreement and any further agreement or contractual relation between Seller and Buyer shall be the law of the State of lllinois. The invalidity of any provision of this agreement shall not affect the validity of the remaining provisions.
12. Non-Assignment

Buyer's rights and obligations hereunder may not be assigned without prior written consent of Seller.
AIRTEC Pneumatics, Inc.

